
Technical Document 552
October 1989

00

00 KAPSE Interface Team
S(KIT) Public Report

-Volume \A

D. L. HayNard

Prepared for the Ada ,,irt Prooram Office

JJ

Apxroved for public raleaje: distt-buton Is urtillrnit&d

89 12 1

NAVAL OCEAN SYSTEMS CENTER
San Diego, California 92152-5000

J. D. FONTANA, CAPT, USN R. M. HILLYER
Commander Technical Director i

I
ADMINISTRATIVE INFORMATION

This work was performed by the Computer Systems Software and Technology I
Branch, Code 411, of the Naval Ocean Systems Center, San Diego, CA, for the AAi-
Joint Program Office, Pentagon, 1211 S. Fern Street, Washington, DC 235031- 'S!
and represents evolving idca ad progress of the KAPSE Interface Team (KIT).

Released by Under authority of
R. A. Wasilausky, Head A. G. Justice, Head
Computer Systems Software Information Processing and
and Technology Branch Displaying Division

I
I
I
I
I
I
I
I

FS!

I
REPORT DOCUMENTATION PAGE Form Approved

OMB No. 0704-0188

Puftc reportling bwre for ln c~lecisolt of iormation es lmatod to avrage I hour per rspome. Induding the time for rmWmng iruoctior. seatcting eiMing aa socirtn. gatherng ao
mIantaglift the daa nreedu. and co 'ni.j 0 r vleng the Coieor of InformtilO Send oorntmer t rgarog this burden e61imaje of any or(hw aspec t s -Aieciton Of Informatio incuoing
uggestlo for reduclng t1is buroen. to Wasiton HeadquarteSee,,cee. DI(oro e Intlore , n Opelons and PR , 1215JtS 0efle alVl D Hrtatgzy. SUte 1204 ,lnrAton. VA 22202 ,
an to the ito of Maagemei and Buo". PapewA Reduction Projec (0704-018 Washington OC 20603

1 AGENCY USE ONLY aLew bir 2 REPORT DATE 3 REPORT TYPE AND DATES COVEAED

October 1989 Final May 1985 to October 1985

4 TITE AND SUBTITLE 5 FUNDING NUMBERS

i KAPSE INTERFACE TEAM (KIT) PUBLIC REPORT C:
Volume VII PE: 0603226F

SAUTHOR(S) PR:
D. L. Hayward WU: DN288 534

7 PERFO RMING ORGANIZATION NAME(S) AND ADORESS(ES) 8 PERFORMING ORGANLZATCN
REOTNUMBER

Naval Ocean Systems Center

San Diego, CA 92152-5000 NOSC TD 552

9 SPONSOFIINGAAONITOR4G AGENCY NAME(S) AND ADDRESS(ES) t0. SPONSORINGA4ONITORING
Ada Joint Program Office AGENCY REPORT NUMBER

Pentagon
1211 S. Fern Street
Washington, DC 20301-3,381

11 SUPPLEMENTARY NOTES

12a DISTRIBIJBTIWAVA&ALBUTY STATEMENT 12b DISTRIBUTION CODE

Approved for public release; dist-ibution is unlimited.

3 ABSTRACT (A2Woras)

This report is the seventh in a series and represents evolving ideas and progress of the KAPSE Interface Team

(KIT.

14 SUBJECT TERMS 15 NUMBERO O PAGES

software engtneering 557
CAIS Ada
APSE interface sadard 18 PRZ$ECODE

programming languages

7 SECURITY CLASSIFIFATION 18 SECURT CLASSIF CATION to SE ITY CJLASSIATCON 20 UMRTATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT

UNCI SSIFTED TINCLA SIFIED UNCLASSIFIED

NSN 7540-01-280-56 0 Stnd" o 296

I
I

CONTENTSI
Section

1. IN TRO D U CTIO N ... 1-1

M e e tin gs ... 1-1

Common APSE Interface Set (CAIS) .. 1-1

Requirements and Design Criteria (RAC) ... 1-2

I&T Tools .. 12...... I

Guidelines and Conventions Working Groups (GACWG) 1-2

C o n ciu sio n .. 1-3

2. TEAM PROCEEDINGS .. 2-1

3. KIT/KIT DOCUMENTATION ... 3-1

I A IM Introduction of Players ... 3-1

Final Report on Interface Analysis and Software Engineering
Techniques - Environment Interface Anaysis olume 1 3-105

Final Report on-Interface Analysis and Software Engineering
Techruques - Engineering Techniques Design and3 Implementation 'Experiences: The AIM Volume 2 3-185

Final Report on Interface Analysis and Software Engineering
Techniques - Transporting an Ada Software Tool: A Case Study1 V olum e 3 .. -3:

DoD Requirements and Design Criteria for the Common APSE
Interface Set (C A IS)-392

Rationale for the DoD Requirements and Design Criteria for the
Common APSE Interface Set (CAIS) .. 3-421

DRAFT Guid'. ! v nd Conventions Working Group Ada Tool
T ransportabilit, de .. 3-482

A_ oegs1on For

*NTIS GRA&I
DTIC TAB

* V

I
I
* Sectioni

3 INTRODUCTION

I
I
I
I
I
U
I
I
I
I
I
I
I
I
I

KIT Public Report

1 INTRODUCTION

I This report is the seventh in a series that is being published by the KAPSE Inter-
face Team (KIT). The previous reports are as follows:

I V!. # NOSC Report # Date NTIS Order #

I TD-209 4/82 AD Al 15 590

I TD-552 10/82 AD A123 136

lII TD-552 10/83 AD A 141 576

IV TD-552 4/84 AD A147 648

V TD-552 8/85 AD A160 355

VI TD-552 TBD TBD

1 This series of reports serves to record the activities which have taken place to date
and to submit for public review the products that have resulted. The reports are issued
to cover approximate s x-month periods. They should be viewed as snapshots of the
progress of the KIT and its companion team, the KAPSE Interface Team from Industry
and Academia (KITIA); everything that is ready for public rcvi.:, at a given time is in-
cluded. These reports represent evolving ideas, so the contents should not be taken as
fixed or tinal.

I MEETINGS

During this reporting pcriod (May 1985 through October 1985) the teams met in
July 1985 in San Francisco, CA -ind in September 1985 in Saratoga Springs. NY. The
approved minutes from these two meetings are included in this report. Also included
are the minutes from the September COMPWG meeting.

COMMON APSE INTERFACE SET (CAIS)

5 Competitive procurement of a contractor for CAIS Version 2 is proceeding and i,
still scheduled to take place during 1985.I

I
I

i 1-1

KIT Public Report

REQUIREMENTS AND DESIGN CRITERIA (RAC)

Perhaps the most significant products of this period were new drafts of the RAC
and initial contributions to the RAC Rationale. New di afts of the were produced
in July, August and September, although only the September one is included here since
the differences are small. Also included here is the first full draft of the RAC Ration-
ale. It is built up of rationales written by independent groups for Sections 4, 5, and 6,
with small parts of rationale for Section 2 provided by members of the RACWG. More
work will be done on this in the future, but we are pleased to provide this much as an
interim.

I&T TOOLS

The final report from the AIM implementation has been completed and briefed to
the KIT/KITIA. The slides from the briefing and the report, entitled "APSE Interac-
tive Monitor Final Report on Interface Analysis and Software Engineering Techni-
ques", are included here. The report is in three volumes. The first, "Environment In-
terface Analysis," is an analysis of environment interface issues. The informaiton in it
is primarily a recap of data contained in previous AIM reports, with the addition of
some information relevant to the Data General Ada Development environment
(ADE). The second volume, "Design and Implementation Experiences: The AIM ,"
covers design1 and inplernentation experience gained th.rough work on the AIM. It in-
cludes information gathered by the AIM team during the implementation regarding
both technical and managerial issues in using Ada. The final volume, "Transporting an
A1a Software Tool: A Case Study," is a case study of the rehosting of the AIM from a l
DG Eclipse to a VAX 11/785. It contains information on the rehost effort, including
transportability issues.

GUIDELINES AND CONVENTIONS WORKING GROUP (GACWG)

The GACWG has prov;ded the first draft of the Ada Tool Transportability Guide n

for this volume of the Public Report. This guide is intended to address some of the
I&T issues which transcend the use of a common interface set such as the CAIS. It
draws on other published style guides, some of the AIM experiences and the knowledge
of the GACWG members to provide various insights into improving tool transpor-
tabilitv. n

I
I
I

1-2 !nI

I
KIT Public ReportU
CONCLUSION

This Public Report is provided by the KIT and KITIA to solicit comments and feed-
back from those who do not rCguarly participa-. on either of the teams. Comments
on this and all previous reports are encouraged. They should be addressed to:

Duston Hayward
Code 411
Naval Ocean Systems Center3 San Diego, CA 92152-5000

i or sent via ARPXNET/MILNET to HAYWARD@NOSC-TECR.ARPA.

1
I
I
I
I
I
!
I
I
I

i 1 -3

I
I
3 Section2

* TEAM PROCEEDINGS

I
I
I
I
I
I
I
I
U
U
I
I
I
I
I

3 KIT/KITIA MINUTES

U TT L1 - OF 8-11 J LY lV oz
3 SAN FRANCISCO, CALIFORNIA

I ATTENDEES- SFF APPENDIX A

9 JULY 1985

Ii. OPENING REMARKS

a Introductions for new attendees Bob Ellison (SEI), Tanya Deriugin
(Boeing), Lloyd Stiles (FCDSSA), Dave Pogge (NWC) and Bob Fainter
(VPI) were made.

I 2. GENERAL BUSINESS

3 * No new contracts were awarded for KIT support or CAIS Version 2.0.

* Public Report V has not been turned in yet.

e The MIL-STD-CAIS, sent out at the end of April, is the only
"accurate" copy (the green cover issue). Spveral members of the
KIT/KITIA have not received their copy yet.

* The standardization process for thp Common APSE Interface Set (CAIS)
has started including a draft of a charter for a tri-service CAIS
Control Board. This will not be a MIL-STD but DOD-STD (metric
version).

More than 400 copies will be sent out to 5 industry associations,

the SEI, and the Tri-Services. Each organization will consolidate
its members' comments and will provide a consolidated position. The
CAIS Control Board will receive 7 or 8 official responses and will
have an independent contractor handle the responses with the CAISWG
formulating the recommendations.

13. WORKING GROUP REPORTS

3 KITIA REPnRT - Herm Fischer reported that a document is being written
to analyze the technological, economic and transitional issues
inv31ved in interface :tandardization. He also reported that a new
KITIA working group is meeting this time to go over the documet.

e E&V STATUS - Ray Szymanski (Wriaht-Patterson) was announced as the
new chairman of the Evaluation and Validation Team. Two RFP's are
coming, for the CAIS Validation suite and the Compiler Evaluation
suite. The E&V team's CAISWG has changed their name to SEVWG

2
I

2-1

I

KIT/KITIA Minutes Page 2
8-11 July 1985

(Standards Evaluation & Validation Working Group). The next meeting
will be held the first week of September in Dayton.

* DIANA - Rudy Krutar reported the copyright difficulties have been
recs d with the draft of the "IOL" primer by Intermetrics.

CAISWG - Jack Kramer reported the CAIS rationale (draft) document by
Tim Harrison (TI) is under review. Tricia is shooting for January
1986 DOD-STO for CAIS. The proposed schedule is:

10-12 SEPT CAISWG/CAIS Implementors Grouip joint meeting
23-27 SEPT KIT/KITIA

I OCT General public review/comments//Cutoff of comments
21-25 OCT CAISWG Comments Review
13-14 NOV Public Review of Co.ments and CAISWG Responses
2-13 DEC CAIS final draft

* RACWG - Hal Hart reported an editorial cleanup of the October RAC
document. Sections 2,3 & 6 are pretty stable, but sections 4 and 5
are still under revision. Tricia wants to put the RAC out for public
review; also SIGAda has shown interest. More than 400 will
ultimately be sent out to the recipients of the proposed
MIL-STD-CAIS.

GACWG - Stewart French (TI) reported on the review of the draft Ada
Tool Transportability Guide.

* COMPWG - Bernie Abrams reported ways of specifying semantics of CAIS
to ensure compliance. They hope to have a document by the next
KIT/KITIA meeting.

e STONEWG - Ann Reedy reported some writing assignments are to be
handed in at this meeting.

* DEFWG - Hans Mumm has taken responsibility for the glossary effort.
He is starting with good versions of CAIS and RAC glossaries.

4. ANNOUNCEMENTS

e ARTEWG is now a subcommittee in SIGAda. Dr. Lieblein says that
funding for generation of a Ada run-time transportability guide to
deliver to Congress is in the works through Wright-Patterson. The
ARTEWG has a copy of our Ada Tool Transportability Guide as a
foundation.

e Tim Lindquist has a PhD student looking at RISC architectures to
support Ada.

2-2

I KIT/KITIA Minutes Page 3
8-11 July 1985

Meetings Scheduled:
1985 9-12 SEP New York (GE)

1986 13-16 JAN San Diego
14-17 APR Atlanta (CDC)
7-10 JUL San Francisco (Ford Aerospace)
22-25 SEP Minneapolis, MN (Honeywell)

3 1987 19-22 JAN San Dieqo

5. PRESENTATIONS

9 GSG Ada Environment work - Mike Vilot, a representative from the
Center for Software Technology, a subsidiary of General System Group,
presented information on a technology transfer environment developed
by Europeans called the Integrated Development Environment for Ada.
GSG is rehosting the Dansk Datamik compiler from VMS to UNIX based on
PCTE (Portable Common Tool Environment), a multi-lingual environment.

* PLRS project - George Robertson (FCDSSA-SD) briefed the Position
Locating Reporting System (MLRS), a project which provides position
reporting, communication (voice & digital) and support navigation aid
to the Army and Marine Corps users. The development and maintenance
requirements for this project reitzrated the need for a common set of
interfaces like the CAIS. Asked if the CAIS was going to help he
answered, "Once Ada is the programming language it will." (Currently
CMS2 is the language.)

* 6. WORKING GROUP MEETINGS

I WEDNESDAY JULY 10, 1985

7. AIM PRESENTATION

s Texas Instruments presented a briefing on the Ada Interactive Monitor
(AIM) project. John Foreman, Stewart French and Tim Harrison spoke
on the APSE Interactive Monitor, an Ada tool (developed for DG's ADE
and subsequently rehosted to DEC's VAX/VMS) which acts as an
interface between a user and APSE processes. Despite a high degree
of complexity and a high degree of tasking, the rehost required only
2.4 man-months over 4 weeks. The compiler quality influenced the
required time.

I The Model Comparisons produced some interesting results. The
40-20-40 mapping model (design, code, test) when compaired with the
actual AIM effort showed dramatic differences (See Table I for
comparison results. This also proved to be true with the Brooks
model (plan, code, test, system test) and the GTE mapping model
(plan, specification, design, design, code). More time was spent in
design and implementation than the models predicted. The AIM did not
require as much testing as the models predicted. If more time is

2-3

KIT/KITIA Minutes Page 4
8-11 July 1985

spent in requirements definition and design, then less time will be
sp.nt in integration ar:d testing. U,'ng a source level debugger
reduced testing and increased productivity.

PLAN SPEC DESIGN CODE TEST SYSTEST

40/20/40 40 20 20
AIM 65.7 27.7 6.6

BROOKS 33 17 25 25
AIM 65.7 27.7 2.6 4.1

GTE 2 8 40 15 25 10
AIM 11.9 3.9 49.9 27.7 2.6 4.1

----------------.-. -----------------------_______. ...--...- _

Table 1. Models vs. AIM Results

* SoftCost, Price-S, and COCOMO costing models were also applied, The
SoftCost and COCOMO models predicted higher costs than actually
Experiencel by 30%.

* The team quality was pretty good considering the tool was pretty
difficult.

* They used object c-iented design (Booch), but had some problems and
produced three different prototypes. One result of the environment
comparison (DG AwE and VAX/VMS) is that it is essential to have
debuggers on both systems. VMS is easier to use than the ADE.
Problems were discussed concerning DG's PDE and ArtS. The TI team's
Ada tasking experiences produced a taxonomy of Ada Tasks: servers
(agent, e.g., buffer tasks), actors (generate requests -e.g.,
producer c- monitor tasks), and transducers (combination -e.g., msg
router or secretary casks). A majority of tasks come ;n actor/server
pairs.

* VAX/VMS is mcre integrated than the OG ADE. Transporting the AIM
from DG to DEC was done at the source code level. It took 2.4 man
months in just under one calendar month using 240 separate text
Files. There was one transfer back to DG. then some changes made to
both with no conditional compilation used in order to assure that
both systems are running identical code (except for the small
machine-dependent sections).

a System dependencies were categorized as terminal control and
communications: open the computer terminal (no echo, no buffering),
close the computer terminal (reset), write data to the computer
terminal display; process control and communication: create/destroy
son processes, read/write a line from/to a son prozess; environment
variables: getting the file names and the terminal names.

e Pehoqt problems included module testing baggage, representation
clauses and complexities related to system services.

2-4

I KIT/KITIA Minutes Page 5
8-11 July 1985

I e CAIS - related issues involved terminals, processes, interprocess
communications and files. Terminal packages do not use TEXT 10;
they are self-contained, independent packages. Scrol,, page, and
form terminal packages had exclusions and additions. lhe Process
model inherits characteristics from a parent and communicates with aparent via standard input or output and the file names were system

5 dependent.

* Conclusions: Buhr's book (System Design with Ada) is a good book.
object oriented design was used. Some other form of data flow design
is necessary to complement object oriented design. Regarding
environment comparisons, Ada promotes transportability problems with
tasking, especially termination. Planning for transportability
works, There are interesting problems with debugging a completed
system that has been rehosted. There nay be serious problems
implementing the CAIS process control ard communications (IPC)3 interfaces in modern OS's.

I
I
I
I
I
I
I
I
I
I

2-5

In, nm n nnnul nnnm mnuunn unl n' n '~r m

KIT/KITIA Minutes Page 6
8-11 July 1985

THURSDAY JULY 11, 1985

8. PCTE PRESENTATION

Olivier Roubine briefed the PCTE (A Basis for a Portable Common Tool
Environment) project of the ESPRIT (European Strategic Plan for
Research in Information Technology) program. No requirement exists
for PCTE to be portable. The requirement is that it support tools
that are portable. PCTE was designed for acceptance, not to be
forced on anyone. It is to support various application domains,
development activities and methods, and project organizations,
including various programming languages: Ada, C, Pascal, Lisp.
There is a basic set of primitives (a la UNIX).

9 There is the notion of providing a consistent user interface, and the
system must run on equipment of various manufacturers. This is
initially based on UNIX: for the short te ii main effort now it uses
UNIX System V and virtual memory; for the "Jng term it will be based
on Ada. The target architecture is workstations rather than
mainframes. Acceptance to the general community was a major factor,
even more so than portability. A single user workstation, a complete
environment connected by LAN, high resolution display and pointing
devices, and substantial amounts of processing power and storage
capacity are all planned. The basic mechanisms are similar to the
CAIS (a set of interfaces).

* Communications mechanisms are based on UNIX. The interprocess
communications mechanism is based on providing information between
processes by message passing, pipes, signals, and shared memory. The
object management system is close to the CAIS node model. The user
interface uses windows. The distribution is based on a LAN model
with transparent access to rare resources and other workstations.
Long range tools and research plans include a knowledge based
programmer's assistant (KBPA).

9. INTEROPERABILITY PRESENTATION

* The talk presented the GACWG's and Hans Mumm's thoughts on
interoperability. It covered several definitions for
interoperability, a suggested outline for a K/K interoperability
guide, and topics that should and should not be emphasized in the
guide. First, there were several definitions for interoperability.
The KIT/ KITIA in the 1982 Public Report defined interoperability as
"The ability of APSEs to exchange data base objects and their
relationships in forms usable by tools and user programs without
conversion." A broader definition is given by Trieber in The Journal
of Systems and Software 2, 1981. This definition covers the
interoperability problems that TI experienced when rehosting the AIM.
Trieber's definition is in two parts. First, his definition of
interoperability is "Systems are deemed interoperable when they are
compatible and capable of mutually utilizing the information
exchanged". His definition of compatibility is "Systems are deemed

2-6

I KIT/KITIA Minutes Page 7
8-11 July 1985

compatible when they have the technical capability of exchanging
information". So compatibility is the technical capability of
exchanging information. Interoperability takes it one step further;
you have to be able to use the information once it has been
exchanged.I

There are several categories of interuperability. They are:

e Inter-APSE - This refers to the transfer of data between APSEs. Here
we are concerned with transmission media, data rates, and message
structure.

m s Inter-tool - This deals with communication between tools. It may be
Ada programs that run in parallel or sequentially or programs that
are implemented in various languages. An actual example of an
inter-tool interoperability problem is writing a program that creates
a data file using one Ada compiler but not being able to read the
data file in with a program written using a different compiler that

m resides on the same computer.

* Intra-tool - This deals with the exchange of information between
components within a tool. It may be communication between tasks,
packages, procedures, and functions.

3 Here is a brief summary of the proposed outline.

Chapter 1 Introduction

I This chapter covers the following topics:

m Purpose of guide
- Definitions of interoperability
- Scope of guide (Emphasis on inter-APSE interoperability using magnetic tape

and data link transfers.)
m Specific uses
- causes of interoperability problems
- Differences in computers, operating systems, compilers (Word length,

two's vs. ones's complement, representation of floating point, structure
of files, etc.)

- Differences related to FTPs (Handling of control characters, flow control
problems, etc.)

- Possible differences in DIANA files
- Other

Chapter 2 Existing Tools and Techniques for Transferring Data Across
Computers

This chapter will present a summary of the "good" existing magnetic tape
and data link tools. It will also include other tools that are useful when
doing data transfers, such as TI's tool PAGER, which is used to aggregate and
disaggregate Ada programs. An example of a magnetic tape tool is TAPESEND.
Examples of data link tools are KERMIT, TCP/FTP, and UUCF. Future data link
tools include FTAM (OSI) and a WIS FTP.

* 2-7

KIT/KITIA Minutcs Page 8

8-11 July 1985

Chapter 3 Development of CAIS Interoperability Tools

This chapter identifies specific interoperability tools that need to be
developed. There is a need for both a magnetic tape and data link tools to
allow the CAIS node model to be transferred across a number of APSEs. Such a
tool requires export software that does a code conversion from the code of the
first host computer to a canonical code (ASCII) and decomposes the node model
into flat files. These files contain attributes, relationships, pointers,
data, and everything that is needed to reconstruct the node model on the
second host machine. Then import software will convert the canonical code to
the code of the target computer and reconstruct the node model.

Chapter 4 Interoperability Problems Encountered By Users

This chapter reports Ada-related interoperability encountered by users.
It may include problems encountered by TI in their AIM rehost effort, other
Ada rehost efforts, future CAIS rehost efforts, and other miscellaneous
problems reported by users.

Chapter 5 Solutions and Guidelines for Problems

Solutions and guidelines to the problems reported in Chapter 4 will be

given.

APPENDIX A Related data transfer tools

APPENDIX B Standards related to data interchange

APPENDIX C References

APPENDIX D Glossary

Emphasis of the guide will be on inter-APSE interoperability. Topics not
emphasized are language interoperability problems (implementations using
multiple languages where interoperability problems are experienced such as
transferring arrays between FORTRAN and Ada programs) and other non-CAIS but
Ada interoperability problems. Several KIT/KITIA members thought that it was
still important to include the unemphasized topics in the guide.

10. WIS PRESENTATION

9 A short status report on WIS was presented. In the short term, WIS
is looking at existing tools over the next four years. In the long
term, WIS is looking at specific WIS nodes (Software Engineering
Environment instances) and the underlying environment to support this
SEE. There are three environment areas: databases, transaction
processing and Ada. The RAC was adopted as a starting point, but
another couple of months of WIS refinement of the RAC should be done.

11. FORMAL SEMANTICS PRESENTATION
2-8

I KIT/KITIA Minutes Page 9
8-11 July 1985

Roy Freedman reported on some efforts on Formal Ada Semantics by EEC
contractors. DDC and CRAI's goals are to develop an Ada Formal
Definition (FD), and Ada tools, with mappings to Ada/Ed, and to
automate ACVC with the Ada FD. The objectives are: concise Ada
references, support for proof systems, support for
interpreters/compilers, support for generation and verification of
test programs, support for derivation of informal but precise
reference manuals, support for future standardization efforts, and
unification of other approaches to specifying Ada. The approach uses
static semantics and dynamic semantics descriptions, splitting the
dynamic into sequential and parallel. They are using VDL for static
semantics and augmented VDL (similar to algebraic approach - ASL) for
dynamic sequential. Karlsruhe uses an attributed grammar. Ada FD
tools will be deliverable tools usable in an APSE. They have a good
model to apply to CAIS FD. The objectives for the CAIS FD are
similar to those mentioned above for Ada FD.

I 12. WRAP UP

m 13. MEETING ADJOURNED

m
m
I
I
I
I
I
I
m
I

m 2-9

APPENDIX A
ATTENDEES

KIT/KITIA Meeting
8-11 July 1985

KIT Attendees:

CHADWICK, Kevin Canadian National Defense HQ

FITCH, Geoff Intermetrics

FOREMAN, John Texas Instruments

FRENCH, Stewart Texas Instruments

HARRISON, Tim Texas Instruments

HART, Hal TRW

HOUSE, Ron NOSC

JOHNSTON, Larry NADC

KRAMER, Jack IDA

KRUTAR, Rudy NRL

LAKE, Mike IDA

MUMM, Hans NOSC

MUNCK, Bob NOSC

MYERS, Gil NOSC

MYERS, Philip NAVELEX

OBERNDORF, Tricia NOSC

PEELE, Shirley FCDSSA-DN

POGGE, Dave NWS

ROBERTSON, George FCDSSA-SD

ROBY, Clyde IDA

STILES, Lloyd FCDSSA-SD

TAYLOR, Guy FCDSSA-VA

2-10

I KITIA Attendees:

I ABRAMS, Bernard Grumman Aerospace Corp.

BAKER, Nick McDonnell Douglas Astronautics

DERIUGIN, Tanya Boeing Aerospace Co.

I DRAKE, Dick IBM

FAINTER, Bob VPI

U FISCHER, Herman LiL'on Data Sytsems

FREEDMAN, Roy Hazeltine Corp.

GARGARO, Anthony CSC

GLASEMAN, Steve Perospace Corp.

HARNEY, Terry Hughes Aircraft

HORTON, Michael System Development Corp

LAHTINEN, Pekka Oy Softplan AB

LAMB, J. Eli Bell Labs

LeGRAND, Sue Ford Aerospace

LINDQUIST, Tim Virginia Institute of Technology

LYONS, Tim Software Sciences Ltd.

McGONAGLE, Dave GE

I MORSE, H. R. Frey Federal Systems

3 PEET, Dianna CDC

PLOEDEREDER, Erhard IABG
West Germany

REEDY, Ann PRC

3 ROUBINE, Olivier Informatique Internationale

RUDMIK, Andres GTE

3 RUDOLPH, Bruce Norden Systems

STEIN, Larry Aerospace Corp.

I wILLMAN, Herb Raytheon Company

WREGE, Doug Control Data Corp.

YELOWITZ, Larry Ford Aerospace & Communications Corp.

2-11

VISITORS

ELLISON, Bob SEI

JONES, William NASA - AMES

LAW, Don Gould

McKEE, Gary Martin Marietta

VILOT, Michael General System GP

2-12

I KIT/KITIA MINUTES
MEETING OF 10-12 SEPTEMBER 1985

SARATOGA SPRINGS, NEW YORK

I ATTENDEES: C E APPENDIX A

MEETING HANDOUTS: SEE APPENDIX BI
10 SEPTEMBER 1985

I i . OPENING REMARKS

* Tricia Oberndorf, KIT Chairperson, brought the meeting to order.

* New replacement members and visitors were introduced. Ray Szymanski,
the Evaluation & Validation Team Leader, is replacing Jinny Castor
from Wright-Patterson Air Force Base. Dr. Carl Schmiedekamp of
Naval Air Development Center is performing as the STARS Software
Engineering Environment team liaison contact. Matt Emerson is now
the primary representative for Naval Avionics Center. Dave Pogge is
the primary representative for the Naval Weapons Center. Dr. Roy
Freedman has accepted a position at New York Polytechnic Institute.
Chuck Weinstock is representing the Software Engineering Institute.
Visiting members of the Ada Run-Time Environment Working Group in
attendence included Chuck Arnold, Daryl Winters and Keith Pratt.

* 2. GENERAL BUSINESS

s LCDR Phillip Myers has been officially desiqnated as the Navy Deputy
for the Ada Joint Program office. Phillip has responsibility for the
KIT and the E&V Team activities. Jinny Castor is now the acting
Director of the Ada Joint Program Office.

* Hans Mumm will be acting for Tricia Oberndorf during her maternity
absence starting in December I her return (IT'S A BOY!). Tricia
will still periodically monitor ARPANET traffi., but Hans will be the
KIT focal point during this period.

e Texas Instruments has completed their deliverables for the Ada
Interactive Monitor (AIM) contract. The KIT support contract has nut
yet been awarded. The initial Delivery Order has been written
including preparation of the Public Reports. This contract will also
insure paid contractor support to all the working groups. The CAIS
Version 2 contract is in technical review in response to the Best and
Final, and the winner should be on board by the January meeting.

* The CAIS standardization process is continuing. Burt Newlin, an old
hand at the standardization process, is on board at the AJPO to
support this effort. It is hoped the charter for the CAIS Control

I

i 2-13

KITiKITIA Minutes Page 2
10-12 September 1985

Board will accompany the package to identify this organization as the
focal point for CAIS changes. The AJPO has 600 copies of CAIS
Version I for distribution in support of this process. In addition
to the three services, this review will solicit consolidated comments
from professional activities such as the IEEE, NSIA, SIGAda, etc.. A
Public Review will occur prior to a revision of the CAIS, which will
be controlled by the CAIS Control Board. The two-page policy letter
included in the initial distribution of CAIS Version I will not be
included in the document during the standardization review to keep
the technical discussions separate from policy discussions. There
has been no activity to change the AJPO policy announced at Hyannis
(formerly included in the CAIS document). DoD policy is promulgated
via instructions such as 5000.29/5000.31 which are presently being
considered for revision.

* Ray Szymanski and the E&V Team now has the Analytical Sciences Corp.
on board working on a classification schema for APSE's. A draft is
due to the E&V Team in October for review and subsequent
distribution. The next E&V Team meeting is scheduled for Melbourne,
Florida. The compiler evaluation procurement is in processing for
release for bids.

* Rudy Krutar announced Intermetrics is performing as the DIANA
mainteoance support contractor. An IDL primer is now available.

Mike Kamrad presented a status of the ARTEWG, which was formed to
address run-time environment and pe,-formance issues. The ARTEWG has
a plan of action and charter available. Their task is to collect
run-time issues into two categories: requirements and
implementations. The ARTEWG is organized into three sub-groups:
implementation dependencies sub-group, applications sub-group and
interface sub-group. They plan to have the next general membership
meeting at the SIGAda in Boston. An ARTEWG-INFORMATION account will
be coming on line on the ARPANET on ECLB. So far, the ARTEWG has
identified 186 implementation dependencies through an analysis of the
Ada Reference Manual and expects a possible total of 300 issues to be
identified. The ARTEWG is working on a run-time dependencies
handbook which may in fact become part of a transportability
handbook. Inputs to the ARTEWG effort are welcomed and may be
submitted to KAMRAD@HI-MULTICS.

3. NAMED WORKING GROUP REPORTS

* Jack Kramer reported progress on the CAIS Rationale document.
Additional work was completed on the previously submitted CAIS
comments. The answers developed were done so in the context of the
current CAIS Version I and will soon be available on the ARPANET
under the KIT-INFORMATION account.

e Hal Hart indicated the 12 July version of the Requirements and
Criteria document is available in hard copy and on the ARPANET. This
version includes a format for submission of comments. Draft
rationales for RAC sections 4, 5, and 6 will be worked on at this
meeting.

2-14

KIT/KITIA Minutes Page 3
10-12 September 1985

m * Ron Johnson reported the GACWG is completing its work on the
Transportability Guide.

e Ann Reedy reported the STONEWG is working on the integration of their
recently produced material for presentation at the January meeting.
A more descriptive presentation is scheduled for Thursday.

e Bernie Abrams reported the COMPWG is reviewing examples of where
additional semantics may be required in the CAIS. Tim Lindquist has
almost completed his operational analysis of the CAIS. A strong
objection was raised in the apparent halting of the denotational and
axiomatic analyses of the CAIS. The COMPWG will revisit this topic
to examine what resources could be applied to this effort. The
traceability of the RAC to the CAIS will continue with an examination
of some automated support to avoid the giant matrix previously
produced.

U 4. ANNOUNCEMENTS

e The RAC will be publically distributed at the November SIGAda
meeting.

9 MITRE has successfully installed software tools on their CAIS3 prototype.

e The Ada Language System/Navy development contract has been awarded to
i the CDC/TRW/SYSCON team.

e The meeting schedule is as follows:

13-16 January 1986 San Diego
14-17 April Atlanta (CDC)
7-10 July San Francisco (FACC)

22-26 September Minneapolis (Honeywell)
19-22 January 1987 San Diego

I 5. MORNING BREAK

I 6. NAMED WORKING GROUP MEETINS

7. LUNCH BREAK

I 8. NUMBERED WORKING GROUP MEETINGS

U WEDNESDAY 11 SEPTEMBER 1985

3 9. PORTABLE COMMON TOOL ENVIRONMENT (PCTE)

Herm Fischer gave a detailed presentation on the European PCTE
project. The PCTE is both a set of interfaces written in C for UNIX
and also a prototype implementation of these interfaces. The project

2-15

KIT/KITIA Minutes Page 4
10-12 September 1985

is sponsored by the European Economic Community ESPRIT program. The
Portable Ada Prototype System (PAPS) was also presented with a
contrast to PCTE. The PCTE is directed toward compatability with
existing UNIX (binary compatability) while PAPS is targeting to Ada.
The PCTE is strongly tied to UNIX whereas PAPS is not. PCTE is also
multi-lingual whereas PAPS is Ada only.

10. MORNING BREAK

11. SEPARATE KIT AND KITIA MEETINGS

s Phillip Myers reported that Jinny Castor is working hard on the AJPO
budget for 1986. AJPO is also planning a Tri-Service review for 4
October. Phillip is the point of contact for KIT, CAIS, and the
Evaluation and Validation Team activities. Some of the additional
new personnel at the AJPO include Burt Newlin, who will be supporting
the CAIS Standardization process and Tom Quindry.

o The Army has committed to provide a person to support STARS and
another to support the AJPO. They have not as yet been identified.
The former NAVMAT 08Y responsibilities for Navy software have
basically t-anfprred to OPNAV 945C.Stan Greenblatt will basically
have the responsibility for Navy software policy.

s The DOD-STD-2167 will have a modification that will address Ada in
1987. The original "DeLauer Memo" will be re-issued by DoD.

* A discussion of thE PCTE presentation/activities resulted in a desire
for continuing liaison for future CAIS implications such as inclusion
of a schema in future versions. Additional discussion included the
possibility of a DoD Standard Operating System (Rich Thall),
influence of Rational Machines hardware technology (Bob Munck), roie
and relationship of the CAISWG to the CAIS Version 2 design (Tricia),
and the importance of prototyping for the Version 2 design phase
(Tricia).

12. LUNCH BREAK

13. NAMED WORKING GROUP MEETINGS

THURSDAY, 12 SEPTEMBER

14. NAMED WORKING GROUP PRESENTATIONS

RACWG - Hal Hart presented a list of 12 proposed changes to the
current RAC. Discussion on the first item required two hours of
discussion regarding security requirements. The remaining items were
to be addressed via ARPANET discussion. Hal will present the RAC for
review at the November SIGAda meeting in Boston.

2-16

I KIT/KITIA Minutes Page 5
10-12 September 1985

I 15. MORNING BREAK

I STONEWG - Ann Reedy presented the current direction of the STONEWG as
formulating a context for software en ineering environments. This
not only includes the process (methodology, etc.) but also the people
and the products. It is from this framework that the STONEWG expects
to derive both explicit and implicit requirements for interfaces.
Phillip Myers raised the point that this activity seems more
appropriate for STARS than the KIT/KITIA and suggested STONEWG
prepare a position paper describing the relation of this concept
definition to the future CAIS work.

I 16. LUNCH BREAK

I 17. KIT/KITIA WRAP-UP SESSION

The CAISWG will continue working on responses to the CAIS comments
and expects to have them available on the ARPANET by the next
KIT/KITIA meeting.

* The STONEWG will prepare a position paper giving a synopsis of their
rationale for requirements definition via articulation of the
environment description. They are planning an interim meeting before
the next KIT/KITIA meeting and expect to have a paper for the Public
Report.

i The GACWG is completing their work on the Transportability Guide and
will begin drafting an Interoperability Guide.

e The COMPWG will pursue formal semantic definition alternatives as
well as the traceability analysis, quality assurance guidelines, and
testing methodologies.

@ Hans Murin requested that any new definitions that are identified
should be forwarded to DEFWG for inclusion in the KIT/KITIA Glossary.

18. NAMED AND NUMBERED WORKING GROUP MEETINGS

3 19. MEETING ADJOURNED

I
I
I

1 2-17

APPENDIX A
ATTENDEES

KIT/KITIA Meeting
10-12 September 1985

KIT Attendees:

BELZ, Frank TRW

EMERSON, Matt NAC

FERGUSON, Jay Department of Defense

FOIDL, Jack TRW

FRENCH, Stewart Texas Instruments

HARRISON, Tim Texas Instruments

HART, Hal TRW

HOUSE, Ron NOSC

KRA;.IER, Jack IDA

KRUTAR, Rudy NRL

MAGLIERI, Lucas National Defense Hq., Canada

MUMM, Hans NOSC

MUNCK, Bob NOSC

MYERS, Gil NOSC

MYERS, Philip NAVELEX

OBERNDORF, Tricia NOSC

PEELE, Shirley FCDSSA-DN

POGGE, Dave NWS

SCHMIEDEKAMP, Carl NADC

STILES, Lloyd FCDSSA-SD

SZYNMANSKI, Raymond AFWAL/AAAF-2

TAYLOR, Guy FCDSSA-VA

THALL, Rich SofTech

2-18

I KITIA Attendees:

m ABRAMS, Bernard Grumman Aerospaca Corp.

I BAKER, Nick McDonnell Douglas

DRAKE, Dick IBM

I FISCHER, Herman Litton Data Sytsems

FREEDMAN, Roy Hazeltine Corp.

I GARGARO, Anthony CSC

m HARNEY, Terry Hughes Aircraft

HORTON, Michael Sy3tem Development Corp

m JOHNSON, Ron Boeing Company

KAMRAD, Mike Honeywell

I LeGRAND, Sue Ford Aerospace

LYONS, Tim Software Sciences Ltd.

MARTIN, Ed Lockheed Missles and Space

I McGONAGLE, Dave GE

PEET, Dianna CDC

E PLOEDEREDER, Erhard IABG
West Germany

I REEDY, Ann PRC

ROUBINE, Olivier Informatique Internationale

I RUDMIK Andres GTE

RUDOLPH, Bruce Norden Systems

STEIN, Larry Aerospace Corp.

I WILLMAN, Herb Ratheon Company

WREGE, Doug Control Data Corp.

I
I
I

m 2-19

VISITORS IN ATTENDANCE

ARNOLD, Charles Texas Instruments

CHLUDZINSKI, John Institute fo Defense Analyses

WEINSTOCK, Chuck Software Engineering Institute

2-20

I
APPENDIX B

MEETING HANDOUTS
10-12 September 1985I

1. DoD Reqiurements and Design Criteria for the Common APSE Interface Set
(CAIS), KAPSE Interface Team (KIT) and the KIT-Industry-Academia (KITIA) for
the Ada Joint Program Office, 13 September 1985.

I
I
I
I
I
U
I
I
I
I
m
I
m
I

i 2-21

MINUTES OF MEETING

COMPWG

KIT/KITIA

SEPTEMBER 9-12, 1985

SARATOGA SPRINGS, NY

ATTENDANCE

Bernie Abrams - Chairman
John Chludzinski
Dick Drake
Jack Foidl
Lloyd Styles
Ray Szymansky E & V
Guy Taylor

PRESENTATION

A presentation prepared by B. Abrams on the
Specification of CAIS semantics was reviewed. The
presentation showed specific examples of areas of the
CAIS where some form of supplementary semantics is
needed. Because of scheduling conflicts the
presentation was given to KIT/KITIA in abbreviated
form without a projector. A copy of the presentation
is enclosed.

COORDINATION WITH E & V

The chairman of the E & V team, Ray Szymansky,
attended our meeting. We plan to continue
communication and cooperation between COMPWG and the
E & V team. The E & V team is working on CAIS
validation. They are not currently working on CAIS
evaluation.

2-22

I
I

PAGE 2I -

SEMANTICS

I Operational semantics has been shown to be useful for
CAIS by the work of T. Lindquist. We recommend that
this work continue. None of the COMPWG members who
had worked on denotational or axiomatic semantics
were present. There was some doubt about the
applicability of these methods to CAIS. J. Foidl
will look into the possibility of getting support
from a graduate student interested in denotational
and axiomatic semantics.

PLANS FOR NEXT LINE

I In the quarter between now and the January meeting
members will work in the following activities. The
results will be reported at the next meeting as an
informal paper or presentation.

Traceability Matrix (RAC to CAIS) J. Foidl,5 G. Taylor

Test Methods for Large Software3 Products like CAIS B. Abrams

Testability of RAC R. Drake

5 Quality Assurnace Quidelines L. Styles

Software Metrics J. Chludzinskii
In addition, the following activities were suggested
for members who were not present or whose status is
changing.

The application of Denotational and Axiomatic
-- semantics to CAIS.

R. FreedmanI L. Yelowitz

The application of Operational semantics to CAIS.

R. Fainter

T. Lindquist

I

2-23

PAGE 3

RACWG

COMPWG met with RACWG to dicuss plans for a matrix
relating requirements to CAIS features.

Prepared by:

B. Abrams

2-24

I
*
I

I Cn:S,

Ii

I
I
I

I
I
I

2-25I

ctA4- S pet C

4, tJo

2-26

I

I
g TK pr v Tcrliv L.;A\ &vo

I

I (S.T

I
I
I

I
I

i 2-27

2-28

I
I
I

Ba
I MIL-~O-CAIS

I
I
I
I
I
I
I
I
I
I
I
I

2-29

I

yb q,4 -AOPLEN (Mloc:

JyvT9-I; T

' tKa bi7jA. /zt e4 74 CIorr y.-

A- rf~ CoZv Iv OLT' JAJ 04 jrT~tn

(REg' fEYLusIU7-.eA0fEA

1 cAA CZ. cOwTeV17S -7CJt

2-30

CPIS FUNCTION~

U CA-O P (Nvooe:

SI

2I3

govm. c, Oovt

2-32

I CAI PUNItTlOJ

I ~~LAvmriavl PrmatN./.k1~ a /OAzi

ItT r5 r; kid

IPIL

I2-33

I
I
5Section 3

3KIT/KITIA DOCUMENTATION

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I AIM

I Introduction of Players
I

John Foreman

Program Manager

I
I Stewart French

Lead Engineer
System Dependent Packages

Virtual Terminal
Rehost

Transportability Guide

I
Tim Harrison

CAIS Rationale

I
I
I
I

I
I

I 3-1

I

Texas Instruments

presents

The APSE Interactive Monitor
AIM

NOSC con/rac/ number N660/ -2-C-0440

Presentation goal

This presentation is being made to inform the
KIT/KTIA of the experiences gained vwhiie
specifying, designing, implementing, and rehosting a
r.ool written in Ada

Hopefull, it will also stimulate further discussions
of:

transportability and interoperability
Lifecycle phases
CAIS interfaces

3-2

I

I AIM

Introduction of Players (con't)I
Jerry Baskette

Help Subsystem
Formal Testing

Rehost

U
Mark Borger

I AIM Command Interpreter
Window Manager

Vlewport Manager
Image Manager
Pad Manager

Primary Engineer on Integration
Rehost

Support Packages

Tom Duke

5 Program Manager
Info Subsystem
Error Handling

Rehost

1
I Jim Rea

Document update

I
3-3

I

APSE Interactive Monitor

Agenda

3500am Introduction John Forman

815am Lifecycle Analysis JohnForeman

9.00am Experiences Stewart French

10:00am Rehost Stewart French

103j0am CAIS Related Issues Tim Hamson

11 Oam Conclusions/Discussion Stewart French

3-4

I
* APSE Interactive Monitor

3 Description

I The AIM is a tool that acts as an interface between the user of an
APSE (at their computer terminal) and APSE processes

I f-he A/I

I . Coordinates the input and outputs from APSE processes
a Provides a method for creating and manipulating new APSE

I processes
a Provides a device independent computer terminal interface

3
I

I
I

I
I
I
I
I

3 3-5

I

APSE Interactive Monitor

Project Goal s/Oh'iectives

Assist the KIT in ferreting out APSE interf'1ce-
issues advise as to ALS/AIE discrepancies advice as

tomiccinn ifams wh.at rmakes irnterfaring easy/hard

Produce a useful, operational, contributing too] to
present APSEs

Portability/Extensibility of future APSEs

October- 19%2 through July- 1 985

3-6

I AIN Definitions and Example

W indoQws ~ g

IIM-
I Environent

I Enrro~wI~tViewport Header

Enroess

Process

AIM Command
Interp~reter

I~

3-

AINI Environment
Interfaces

Pad Script

ParseAIM al

Environment
ML ..Process

3-8

AIN StatisticsI

1 22,000 Lines of Code

I
Reusable Software Components

virtual Terminal
Help package

System dependencies
LALR Parser Support3 General Support Packages (queue, stack)

I
Separately compiled modules

240 compilation unitsI

I Compiler/Runtime

I tem Data General Dec VAX/VMS
AOS/VS

Minimum number of tasks 14 Ada, 5 AOS/VS 16 Ada tasks
I tsks per window 6 Ada, I AOS/VS 8 Ada Tasks

Max Number of Processes 27 small
Executable image size 625 KBytes 294 K~ytes

(Not Optimied)

Specal Requirements SuperUser to suspend/ expanded bqte-count3 resume p--ess and subproces3_quota

I
3

3-9

I

AIM KAPSE Interface Requirements

Terminal Control and Communication

o Open/Close Terminal (binary mode)
o Echo Control
o Read/Write character and/or strings

Process Control and Communication

o Create/Delete process
o Suspend/Resume Process Execution
o Inter-procoss communication

Database

o Open/Close Text File
o Create/Delete Text File
o Read/Write from/to Text File

3 -10

3
*I Lifecycle Analysis

3 Introduction

*I Tasks

* Deliverables

Testing Methodology

Lines-Of-Code

Model ComparisonsI
I Conclusions

I
I
3
I
3
I
I
I

3-i1

I

Lifecycle Analysis

Project Overview

Efforts Tracked for the AIM

Requiremnents Definition
Financial Accounting
System Specification
Preliminary Design

User Manual
Detailed Design

H ,:4rdwi/are/S3oftware Rroblems--
I mpl ementati on

New Hire (Training)
Integration
Re host

Quality Assurance
Testing

CAIS
G AC

Data N-anagement
Interface Reports
SoftwNare Tools

Configuration Nanagemrnen,
P-rogram Management

3-12

I
* Lifecycle Analysis

I AIM Project Efforts

AIM Software Development Efforts

Typical Atypical
I Group 1

3 Requirements Definition Interface Reoorts (3)
System Specification CAIS
Preliminary Design GAC
Detailed Design Rehost
Test Plans And Procedures

SPreliminary User's Manual
Implementation
Integration
Formal Testing
Documentation UpdatesI
Group 2

I Configuration Management
Quality Assurance3 Program Management
Data Management

1 Group 3

New Hirp
Software Tools
Haroware/Software Problems
Financiat Accounting

3-13

Lifecycle Analysis

ANProject TotalEfot

*Requirements Definition 6.8e-7)

USystem Specification (2.21"v)

SPreliminary Design (1 5%)

ODetailed Design (17 90011

O Test Plans/Procedures (5.7%)

iPreliminary User's Manual (37 3%)

SImplementation (1 5.83.)

SIntegration (1 5%)

St ~ Formal Testing (2.0%)

SDocumentation Updates(.)

SProgram management (1 0.3%)

Q uahIty Assurcrce (5"0"

E2 Configuration management .

SData management()

Sinterface Reports (I11 0%0

UCA! S(107%)
UGAC (17%)

SRehost (2 201)

0New Hires (I)10)

0Sof tware Tools (1I%

SHardware/Software Proolems (_ -

SAccounting (710)

3-14

I
* Lifecycle Analysis

Error Correction
Bug Counls

I Types

AIM Bug Count And Type

INFO HELP CLI

Form&at Error

II st Pass 14 3 25
2nd Pass 4 0 6
3rd Pass 0 0 0
4th Pass 0 0 0
Pehost 0 0 0
Re-Rehost 0 0 0

I L ogic Error

I st Pass 0 0 2
2nd Pass 0 0 2
3rd Pass 0 2 25 4th Pass 0 0 1
Renost 0 0
Re-Renost 0 0 0

I
I
U
I

1 3-15

I

Lifecycle Analysis

Testing Methodology

Documentation

Acceptance Test Plan
Acceptance Test Procedures

Computer Program Test Specification
System/integration Test Plan

System/Integration Test Procedures

Testing

1-lnit Tpt.ng
Integration Testing

Rehost Testing

Acceptance Testing Will Be Performed At the end of July

3-16

I
I Lifecycle Analysis

* NOSC Tools LOC

Virtual Spell Style Batch/Forms
Terminal Checker Checker Generator

I Source 2421 2743 3189 2869
LOC/MO 11.4 14.5 17.3 16.7
LOC/MM 246.0 311.0 3,30 3595

Source
I & Comnts 30 11 4848 4681 4576

LOC/MM 14. 2 25.6 25.5 26 7
LOC/MM 306.0 549.7 547.5 573. 4

Total Lns 6300 7576 7880 8307
U LOC/MD 2. 3 40.0 42.g 48.4

LO /'1 1N 640 .2 I59.0 921 .6 1041 1

I Causes for the Higher Figures

3 Ada Experience Attributable to the AIM
Increased Awareness of Ada

Minimal Tasking
Small Scooe

LIttle Documentation RequiredIThe NCSC Tools Were implemented On the DG System Three
Months

Ifter the A IM Implementation Had Begun Thus Allowing the
NOSC

I Engineers To Draw From the AIM Experience
,'eusable Software Imported to Spell Checker & Style CheckerI (25%)

I

I 3-17

I

I

Lifecycle Analysis

Lines Of Code I

7384 Source 11190 Source 21059 Total
& Comments Lines

Day Month Day Month Day Month

Grp I Only 5 5 120 0 8.4 181 8 15.8 342.2

Grp 1 & 2 4.5 96.6 6.8 1465 12.7 275.6

Low Figure for the M U
Lack of Experience by all Persons Participating on the AIM

Project 5
The Degree of Complexity of the AIM 3

Degree of Tasking I
I
I
I
I
I
I

3 -18 I

I

* Lifecycle Analysis

* Typical Pi-oject Effort

* Requirements Definition

* S'stem Specifi cation1 (3.9%)
P Prel imi nar y De-i a n
(2.7%r)

ODetailed Desion (3!1.4)
Test Plans /Procedures

Preliminary U~er'*
r"a n ual (S.3.S)

___ r Implementation (27 7 7'
I ntearation (15S

SFormal Tasting (3.5-.V

SDocumentation Updatei

U 3-19

Lifecycle Analysis

Modei Compari5on5

Lifecycle Models

40-20-40 Model
Brooks Model

GTE Model

Costing Models

Price-S Model
COCOMO Model

3-20

* Lifecycle Analysis
* 40-20-40 Model

. .. esign Phase (.40%)

*Codi no P haze20%)

STesting Phase (40%,)

I AIM

U Design Phase (6E 57'

UCoi no P hne 71
T Testi no Phase (6 6)

3-21

Lifecycle Analysis

40-20-40 Mapping

40-20-40 AIM

Design Efforts Requirements Definition
System Specificstion
Preliminary Design

Detailed Design
Test Plans And Procedures
Preliminary User'S Manual

Coding Efforts Implementation

Testing Efforts integration
Formal Testing

Documentation Updates

3-22

Lifecycle Analysis
Brooks Model

*Plan Phse(3

*Cadi nq Phase(1%

*Te3ti ng Phase (2d%)

0TestSystem Phase (25%)

I AIM

UPlan Phse (65-,1)

*Coding Phase (27 719)

STe~ti nq Phase (.2.6 ,)3 C est Sy~stemn Phase (4 1':7)

I 3-23

Lifecycle Analysis

Brooks Mapping

Brooks AIM

Planning Efforts Requirements Definition
System Specification
Preliminary Design

Detailed Design
Test Plans And Procedures
Preliminary User'S Manual

Coding Efforts Implementation

Testing Efforts Integration

System Test Efforts Formal Testing
Documentation U dates

3-24

* Lifecycle Analysis
3 GTE Model

3 U~Plan Phase()

/ U Specification Phase (3:;)

13 Code P hazee(15
0 Tee tihm2

4 Systemn Test Phase (10%9)

A! M

3 U ~Plan Phase(1)
Speification Phms

Deign Phse(49.9Z)

.......... od Phase(27.7Z)

C1 Tet Phae (2.6X3 Systen Test P hase4. 1 Z

I 3-25

Lifecycle Analysis

GTE Mapping

GTE AIM

Planning Effort Requirements Definition

Requirement Effort System Specification

OesiQn Effort Prellminary Design
Detailed Design
Test Plans And Procedures
Preliminary User'S Manual

Codino Efforts Implementation

Test:ng Efforts integration

System Test Efforts Formal Testing
Documentation UIodates

3-26

* Lifecycle Analysis

U ~ 300

500

400I 300

~09

i ntiation Definition Deoign Programminq 3istern Tet

Price-S

1 50

30

De3ign I mplementation I riteqrstion/Te~t1 nq
3-27

Lifecycle Analysis

SoftCost Mapping

SoftCost AIM

Initiation Phase
Definition Phase Requirements Definition

System Specification
Design Phase Preliminary Design

Detailed Design
Test Plans/Procedures

User'S Manuai
Document Updates

Programming Phase Implementation
Integration

System Test Phase Formal Testing

Price-S Mapping

Price-5 AIM

Design Preliminary Design
Detailed Design

Implementation Imlementation
integration Ani Testing Integration

Formal Testing

COCOMO Mapping

COCOMO AIM

Plans And Requirements Requirements Definition

System Specification
Design Phase Preliminary Design

Detailed Design
Programming Phase Imolementation
Testing Phase Integration

3-28 Formal Test

I

I Lifecycle Analysis

I Conclusions

Design EffortI
ImplementaLion Effort

Testinq Effort

I LOc

UWra-UQ

II
I
I
I
I

I 3-29

I

Lifecycle Analysis

60

so
40

30

20

?13 nsReq ui re me nt De~ign Programmi ng Tc.ti ng

3-30

I
AIM Design Phase

Used Object-Oriented Design (OOD) Methodology

Easily identified major AIM objects and their associatedI operations (80%)

Attributes of objects created confusion
e.g.--window/pad relationship

AIM's underlying asynchronous data flow model not well defined
3 using OOD (20%)

Augmented AIM design using conventional data flow techniques
in conjunction with the concept of Ada task sets

I Evolutionary process using prototypes to define final general
purpose AIM data flow model

I
I
I
I
I

I
I

I 3-31

1

Experiences

Object-Oriented Design

Environment Comparison
DG ADE vs DEC VAX/VMS

ADE Compiler

Ada Language

Tasking
Exceptions

Strings

3-32

(IWtO..STRTES...DU)
(I tOJCIJKYWFC...TOI~L.DU13 (VL I D-KEVUY tOM E)
(I MFO-(EVOFCJM O)
(19LLOWIL..TOKE11S..TILL.TYPE)

(I If WO-KE VUOFKLT.STR I IG ~VR 1L~..V~

(INIFO-.DI SPLAY)
(NUMEROF..DISPLRY-.LIIES)

FfE-T- I SPLAYV
L I ST..ALXEYSTROKI10MAM-HRMSII ~LI ST.A.LOWFO-MSL f O-OKENSI
COLLECT...IDJORZIALFRII ME-jkMSI
CO3LLECT.A1W.FOrT-.SPEC I F I C-1 rMtGE.J WfO I

COLLECT. J-OW"T.aL.IFI.. KEYSTROKE INFU ~COLLECTRIM-FOFM ISPFICJKESTIOKI 0

COLLECT .ftO..FOFVIA ATJLJJI VOI.t'O
cOLIECT..fte.FORMRT-.SPSC I F I CJJ I IVXLJ- IfWO
COLL.ECTAMLSCORMAT.SPEC I F I CJJ I MDOLU1OOEJ I 0O
COI I CT..fC-RV-OMr.sEC IF ICJJ 1INOW.LP-i if0I ~ ~~COLLECT. FR M ~rT..SPEC I F I C-J. I II)-OIPCESS. I WO
COLLECT...RICFOVAT-.SPEC I F I C-9 I NC)OLLJSSOC I AT I OiHS-. I Wf
COLLECT...RCLIFITLL.JJ I DI(J NO
COLLECT. ftC..FOFrMT-.LL-.T OP-.LEVEL-1. Wf0I ~EM"LTEJIfOSTFITEI

EMLLRTE-KEYSTROKL-STRTE
EILLFTL.TEW1 I IfL-..STRTEI
EJI.LATL.UIWIJS...-STATE
EU.RTL-SPEC I F I C..J. I I110U.STRTE
I DEKT I FY-..I If0.J(nXIMD

INTERPRET3 AIKIWliO

I If0.JEYWiOFID14T-FOJN

<(I A.FLI D- .I WO-COMMAD)

3-3

I WIU LIr

I niITISL.IZEI WfO-TEV1 I MAiTE
GET-TM-TL I ME

I WFO- I TERMI I MATED

(MOTH 14i.3.TO..flTPUT)

3-34

I
I

* Environment Comparison

I The APSEs

! DG ADE

* The APSE is entered from the AOS/VS command
language interpreter (CLI)

It extends the command set from AOS/VS

1 DEC ACS

I The APSE is VMS

I The ACS is entered from the VAX/VMS command
language interpreter (DCL)

The ada command is available directly 'rom DCL

All other ACS commands are executed from within
the ACS

I
I
I
I

I 3-35

Environment Comparison

Data General AOS/VS
Ada Development Environment (ADE)

Digital Equipment Corporation VAX/VMS
Ada Compilation System (ACS)

Compiler
Linker

Debugger
Librarian

Configuration Management Tools
Tet Editor

Electronic ilaii

Example of Use (for compiler and linker)

Functional Capabilities

Integration Into the Environment

3-36

I
I
I Environment Comparison

3 DG ADE Compilation example
I enter :userl:atb:aim

I -) batch ado temp
Creating directory :UDD:RORGER:BRTCH to hold batch job output files.
QUEUED, SEQ=18544, QPRI=127

I -) batU

•0 TI Ada Work Center / BATCH OUTPUT FILE *

E R OS/S 5.03 / EXEC 5.03 5-JUN-85 12"51:58
7R I = 127 SEQ=18644
INPUT FILE - :USERIl:RTB:AIrM:FINRLRELESE DEMO:'?008.CLI. 01.JOBI LIST FILE -- :QUEUE:BORGER.LIST. 18644

LAST PREUIOUS LOGON 5-JUN-1985 12:41:20

ROS/US CLI REV 05.01.00.00 5-.JUN-85 12:51:59
) SERRCHLIST :USERIRDE:MACROS, :MACROS,:UTIL,

: USER 1 A: 1B RM:MFICR OS, :TCS
) DIRECTORY :USER1 RTB:RIM FINRLRELERSE:DEMO
) 2FACL SYSIOA,OWARE,BORGER,OWARE,,W RE
) enter/flat/nonews/proj?=:USER1:ATB:AI1M
ROE Rev ision 2.20.00.00 from directory :USERI:RDE
-a) do temp

Command Iine parsed.
Ado Compiler Rev. 02.20.00.00 6/5/85 at 12:.5211
Reading from :USERi :ATB RIM:FINRL.RELERSE:OEMO:TEMP. CAD
5 syntax error-s
Procedure body TESTERAORS has NOT been added to the i brary.
2 semantic errors
Code generation suopressedp Used 0:00:01 in 0:00:03

-) exit
Leaving the Data General/RoIm Ado DeveIopment Environment.3 80S/US CLI TERMINRTING 5-JUN-85 12:52: 16

PROCESS 7 TERMIIINATED
ELAPSED TI ME 0 00: 16
(OTHER JOBS, SAME USERNAME)
USER 'BORGER' LOGGED OFF 5-JUN-85 12:52. 16

7 I-IST FILE EMPTY, WILL 1OT BE PRINTED

I
I

3 -37

I

Environment Comparison

Compilers

ANSI standard Ada compilers

Parse the entire Ada source rile;
if any syntax errors are encountered, the

compilation is terminated

Assuming no errors from step,
semantically check each compilation unit;

if any semantic errors are detected, compiiation
terminates for that unit, but continues for the

remaining units

Generate machine code, in the form of relocatable
binary for each correct unit, and update the

program library accordingly

The Ada compiler can be invoked from the command
line or executed in a batch stream.

3-38

II
I

I Environment Comparison

! DEC ACS Compilation example
$ acs set librar [.lib]5$ ada temp/list temp

I I11TH nothing

IFIOAC-E-ISSEMI, (1) Inserted "," at end of line

3 TYPE mine IS RANGE

ZRORC-E-IGNOREUNEXP, (1) Unexpected '," ignored

XRDAC-I-IGNOREDECL, (2) Declaration ignored due to syntactic
errors within it

6 hoo-dooo(;

.1ARC-E- IG OPEPARENS, (1) Empty parenthes-es ignored

7 ENO test._errors;
iZDAC-F-TERIMSYNTAX, Terminatrng compilation due to Syntax error(s)
11RORC-F-ENDABORT, Ada .-m.il ation aborted

$ type temp. lis

I 5-Jun-l985 12 5
6 40 UAX Ado Q1 0-7 Page I
7 43 USER1: [FREINCHTEM'P. RJ -; 1 (1)

I WITH nothing

i ,R0C-E-!NSSEMI, (I) Inserted "," at end of line

2 PROCEDURE test-errors IS
3 TYPE mine IS RANGE ,

1 2
IROC-E-;GIIOREUNEXP, (2) Unexpected ",'i gnored1 2ORC--GNOREDECL, (1) Declaration ignored due to sintactic

I 4 o li tch- rror-s wi thin i t

4 alitch,
5 BEG'N

10t" oodoo(),

3 DAC-E-tGN0RFJ9RES, (1) Empty parentheses ignored

O test-errors
iOAC-F-TE1S'YMTAX, -erminating compilation due to suntax erro_--

I 3-39

I

-) type temp Ist

Ado 2.20 0.0 6/5/8 at 12:2. 12
:USER1 :TB:RIM:Fl NRL_ ELEASE DEMOTEMP RDR page 1

II ITH nothing
2 PROCEDURE tastrror IS

Syntax error with input 'procedure* (Line 2, Column 1).

Inserting '," immediately before 'proCedure"

(Line 2, Column U

3 1 TYPE mine IS RANGE

Syntax error with input , (Line 3, Column 20)
Replacing "," (Line 3, Column 20) with +'.

44 1 giitch;

Expression appears where range attribute is expected

SI EGI1
6 I hoo.coo();

Empty parometer list, ' , in call

I END test-errors,

() not allowed in proc car.
I with NOTHING,

NOTHIt 43 denotes no unit in the library
oL 6 dODf0n

" H0ODOO is undefrned.

3 -4 0 i

5 Environment Comparison
I DO ADE Linker Example

-batch adalink/debug testl3 -) baty

*'*** TI Ado Liork Center / BATCH OUTPUT FILE *

ROS/US 5 03 ' EXEC 5.03 11-JUN-85 8:31:032
0PRI=127 SEQ=18737
IN~PUJT FILE - USER1:ATB:*AIM:?OO7.CLI.O01.JOB (AJILL BE DELETED AFTER

PROCESSING)LIST FILE -- .OUEUE.BORGER.LIST,18737

LA.ST PREUIOUS LOGON 11-JUN9-1985 8:28:12

ROS/US C..I REUJ 05.01.00.00 11-JUN-85 8:31:04
) EARCHL IST : USER 1: POE: IRCR0S, USER 1: eORGER: 11rZ,9S, . MIAC US, UTlIL,

SCRED, USERI1:ATB:AIM:1ACROS, :TCS
) DIRECTORY USERI-RTB:AIM
) DEFRCL SYSJIMGR, Ol-ARE, BORC.FR, OWARE, +, RE

)enter /f Iat/no.-ews/proj USER1: RTS: AI M
POE Revwsio 2.20.00.00 from directory :USERI:ADE
-)adai ink/debug tfrstl

I"mmn lie parsed.
Rda Loader Rev 02.20.00.00 5/11/85 at 8:-3 42I Creating PR file IJSER!.AT8:AIM.TESTI

-ex It

I Leaving the Data i'eerlQ/Rolm Ado Development Ervirn)ment

- OS /US CL I 7E;MIRTING I I-11UN-P5 8 24 '-S

I -':FOCESS 8 7EFM1lNRTED
EL ;ZSE: TIMIE 0,03 34

OTHER C6S, SrME u2SEPrrE3
USER 'BORGER LOGGED 3FF I -jL'N-85 3 24 8

L ,7;:L £EiP -JLL .NOT F7E PR I TED

3 -4 1

Environment Comparison

Compiler Functional Capabilities

VPX/UMS

I - ROS/US/ROE

assembly language generation ...
conditional compilation I 1--I
debug information generation.
enable and disable listing.
errors only listing. .. J....I
set default directoryJ for source. . IIXI
.Bet I sting width and height. -__--,'

specify different program library. I_x_l_'_,
Specify main program.

disable use of .uSTE library .. .
suppress all run-time checks
Multiple files copiled at one time. .x_-
language sensitive editor support . x.I..
specifying an err-r limit, l~xjI.
enabl ing/disabl ing aon error categorN. l---I
enable/disable opt imization.)-on1__.
syntax only checking,

3-42

I
I

I Environment Comparison

I Linker Functional Capabilities

I UMS
I AOSiVSiAODE

non-Pdo I ink capabi I i ty I-----1
deferred (after a specific time) I] ! J
enable/disable link map generation _xIxI
specify full/brief link map
generate a link command file -x2....
enable/disable symbol cross-reference I_1_L 1
generate debug information _x_lxl
enable/disable executable file creation I x.I.-1
specifu batch/nobatch operation --xI -1
zpecif,_i map filename -.x-I -1
_ireci f ociject fi lename
;pecify diagnostic output file
enable/dizable system library search Ixlx_
enable/disable traceback info
librar, search capabilities

extended options capaoilities
sharable image support
specify maximum memory
force loadInatleidisaole library trace
specify mai program
non-oda main program IZ -I

3- 43

Environment Comparison
DEC ACS Linker Example

Sacs link testl
XAS--CL-LINKIMG, Invoking the VAX/VMIS Linker
$SET DEFAULT USES 1. FRE!MCH I
$LINK s-

/rIOIAP-
/EXE=(IESTI-

SYSS IIIPT: /OPT I OII
USERI. FRENCH]TEST1.O8J, 1
SYS$WIMiOM ISYS-IB AD ALI8]IO-EIXCEP'IONS. 08,11
SYS$11I1ON: LSYSLIB.ADRLIITEXT-JD...OBJ;I
SYS$COMltOM: [SYSLIIB. RLIB]TEXT..JO OBJ; 1
USERf1: (FREICH.LIBPCK1OBJ,4
USERi: [FRENCH.LIBIPAICK1 .OBJ-4
USERI:(FRENCH.LIBITEST1.OBJ;4
$DELETE US'ERi 1FFRENCHITEST1 OB.j;1
$DELETE USERi: (FRENCHTEST1.COM; I

3-44

I
I

I Environment Comparison

I Source Level Debugger Functional Capabilities
i tAIX /VMS

- AOS/S!RAOE

Breakpoints (set/reset) on
statements
program units

subprograms. x l
packages I. .- -. _I
tasks IXI-YI
generic units I - -x-II

exceptions -x-
Trchpoints (set reset) on[...stateents

program units -I-

subprgsams
I packages x.-....

tasks
generic uni ts l-

exceptions -x-] -x-I

rendezvousx. . .x.l
Wotchpoints for v a b f es -x-

irogram soure
I histor et s..

stock_ xi
tasks I .x

obreaks I x
tracepoicnts .o..rl .

Evalnuate Objectsf x
StepI - --

moifl vaiale. vu.. xJ-
cs o in terrupt

bul i screte amoun t
into subprograms -_ - l
over subprog ramsI__ x

I to n .Lrend~ezvous -..-

to ernI of program unit
MiscellIane.ous -l-
symbl abbrev iat ion~ ~
set context for program control . .------

input debugger commandc fi les l. __
modify variables' value _
consolIe interrupt _._ .. .

~full slreen mode ._. I . .IX-I - 1

keypad mode for entering commands. I-xI __

3-45

Environment Comparison

Program Librarian Functional Capabilities

UAX/UMS

I ~-~ OS/US/ROE

Listin Information
dr-ectory of unit names. .
associated file names for unit .. x-l
units WIT-ing specified unit .

units WITHed by specified unit I lIx-l
time-stamp information _x.lXJ1
kind of compilation unit -,,- I

Completeness and Currency clieck. Ix...I .l..x
Automatic recompilation -1
Spawn CLi subprocess . -x_
Remove compilation unit.
Library Rccess Control

Read Only X-1 x I
Exclusive. _xl _xI

3-46

I
I

I Environment Comparison

Generated Files
I

Compilers

D6 AE LEC A CS

.05 .OBJ The object code
SR Assembly language equ.valent

LST LIS List file

TREE 'ACU Internal representation for PL

.STR String info for Diana tree
ADC A copied source file

II Linkers

SV6 AOE OEC A CS

I MAP MAP A link map
PR EXE The executable program
ST Symbol table info for debuo
LOG LIS Link messages

COM A DCL command file

I
I
S
U
I

3-4.;'

I

Environment Comparison

File Structure

DG ADE

Program library is a file in a given directory

These files are put in the director containing the program
1i brary

The files that are required by the l!nk/progrrn librarin have a

unique name constructed from the original name and a number

DEC ACS

Program library is a directory

Generated files are placed in this directory
except for the list and map files

3 -18

,I
I

Environment Comparison

Configuration Management

Functional Capabilities

JFiX/UMS (CMS)
I - AOS/VS (TCS)

Confi guration Librory
create x

Qelete .. . _X-l
veri fy _ l

I Library Elements .
create
delete
fetch . . .I qsert Ix_- -.;<-

unreserve
rep lace ix
d i f ftr nce

Element Classes
create x
delete

Insert element
remove element _xI - 1

Listlnqs .. . I-- ,
elements [.x _

,eservat ion.
.', s tory . I [

3nnotat.on

3-43

Environment Comparison

Configuration Management

DG ADE Text Control System TCS

Creates a control file for each file that is under CM
Like Unix SCCS

DEC VMS Code Management Syctem CMS

places files in a controlied directory much like the Adai program
library

3-50

!

I Environment Comparison

I Electronic Mail Systems

* Functional Capabilities
VUAX/ iMS (MAIIL)5 _ 0S/US (MRIL CLI)

_-__-

Message related functions
Send . . . x. .x2
Receive
Immediate forwarding
Immediate reply _
Arcn vxre. ..x
Pr int - ..-j
Searcr for string

Edit message to be sent. xl
Read next message
Read previous messoqe
Read first message .

Read last message x .
Position to start of current message I-x-l-1

MiscelaneousI
Keypad support
On-iine help facilitg
Serd to distribution lists
Send across OECnet .xlI
Mail folder-s x

3
I
I
I
I
I

I
£ ~3-51

I

Environment Comparison

Text Editors

DG ADE SCRED

DEC VMS EHACS

Functional Capabilities

UAX/rMS (EMACS)
RCS/US (SCRED)

Cursor Movement
Left, Right, Up, Oown ,
Top, Bottom.. . . . I- x _
6eginning/End of line.
r4ext/Previouz Word

Search/'R.Pep!ace
earcrn Forward I .xj

Search Feverse I l
Regular Expression Search. _x
Regular Expression Replace .. xI
Multiple Replace _

Buffers l
Copy text to
Copy text from tLxJ
SIt SLreen
Ed i # -idt i aIe f Iles.-Y- - -

Req i ons
et mark _xI.__

Kiil region.
Cooiy region. _.x_
Mo e region. _x .-

File Manipulation
Coou from file ..x ._
AIVlIen to file _x_

Iacros -

Keyboard macros ..-I x~i
Macro ongJace .

Rda Mode . _
Ada LRPM automat-d access

Miscel laneous
Terminol Indeoendent .._XIx_
1-i ine help foci I tu"
Mini nal redisplay algortthm-
Weupad, function key rr-V.finitton -..-._x_
Undo Capao i I i t- -
Spown CLI -l x_'
iCommard ikeration.
Command type-ahead

3-52

I
I
I
I
I DG PROBLEMS/ISSUES

AOS/VS PPODLEL1S/ISSUES
* ADE PPO~LEMS/ISSUE2

I
I
I
I
I
I
I
I
I
I
I

.3 -53

I

Environment Comparison

Conclusions

The two environments contain very similar tools

The DEC ACS is more integrated into the environment than the
DG ADE

The DEC compiler/linker generates better error messages

The capabilities of the editors were similar except that EMACS
could

* edit multiple files at the same time
9 window the display and allow editing in each window

The DG electronic mail system was insufficient

The DG ADE file structure was confusing and difficult to use

3-54

I

| ADE PROBLEMS/ISSUES

VERSION 2.20

1 06 Ads COMPILER/RUNTIME

I NO UNCHECKED DEALLOCATION
NO UNCHECKED CONVERSION

INEFFICIENT STORAGE ALLOCATION SCHEME
UNUSUAL RUN-TIME STORAGE MANAGEMENT SCHEME

3 DYNAMIC OBJECTS WITHIN TASKS ALLOCATED FROM TASK'S STACK

AGGREGATES
STRING SLICES

3 INADEQUATE DOCUMENT4TIn2N FOp DO! 5 $YTEM PYOCRA'MhIS

PHANTOM BUGS

GENERICS
SYNTAX ERROR DETECTION/MARKING

LINKER/LIBRARY SEARCHLIST CLOSURE PROBLEM
PACKAGE BODY DEPENDENCY PROBLEM

I
06 BUILD UTILITY I

I S CR EL

I COMBINA TION COMPILE/L INK TItE IS TRUE

INDICA TION OF A COMPIL ER "S PERFORMA NCE

I
I
I

3-55

I

AOS/VS PROBLEMS/ISSUES

VERSION 5 03

TERMIAA L COMMUNICA TION

RESTRICTED TO READING 1 CHARACTER AT A TIME
FROM THE TYPE-AHEAD BUFFER

CAN'T DEQULUE I/O REQUESTS TO CONSOLE
CONSOLE I/O FROM Ada TASKS IMPLEMENTED VIA AOS/VS SERVER TASKS

PROCESS CONTROL

PROCESS CREATION IS OK
DELETE A FATHFR PPOCESS HANGS (DOES NOT KILL SON PROCESS)

RESUME/SUSPEND PROCESS EXECUTION REQUIRES SUPERUSER PRIVILEGE
MUST USE SUICIDE CALL TO TERMINATE AIM PROGRAM

PROCESS COIMUNICA TION

)PC FILES WITH Ada TASKS HANDLING I/0 SYNCHRONIZATION
CAN'T PASS IPC FILES TO SON PROCESS

AS @INPUT and @OUTPUT (AOS/VS DESIGN FLAW)
CLI UNDER AIM ACTS AS IF IN BATCH MODE (CONSOLE IS UNDEFINED)
SUSPENSION OF PROGRAM OUTPUT DONE VIA Ada TASK SUSPENSION

RATHER THAN SYSTEM SERVICES
PROGRAM LOGIC ASSUMES ASYNCHRONOUS PIPE FOR WRITING TO A PROCESS

(AFFECTED REHOST)

3-56

Ada Tasking Experiences
I
I

I Taxonomy of Ada Tasks

I

I Ada Task Sets (Building Blocks)
I
I

AIM Data Flow Model

I

I Controlling Ada Task Start-up

I

Graceful Ada Task Termination
I
I

Conciusions

I
1 3-57

I

Taxonomy of Ada Tasks

Server Tasks

Actor Tasks

Transducer Tasks

j-58

Actor Tasks

Active constructs

Generate external requests

Infinite loop

Zero entries declared in specification
(except possibly a START entry)

Examples

Customer/Consumer Task
Producer Task
Monitor Task

3-59

Server Tasks

Passive constructs

React to external requests

Infinite loop encapsulating
selective wait statement

Entries correspond to exported services

Terminate alternative

Examples

Agent Task
Buffer Task

Synchronization Task

3-60

I

5 Ada Tasks Sets (Building Blocks)
I

Ins trinsic Aclor/Server relationship
I

* Majority of Ada tasks cooperate in
Actor/Server pairsI

I
Ada Task Sets

5 Assumptions

Task inter-relationships relative to Actor taskActor/Serv-er tasks occur in alternating patterns
Actor associated with at least one Server and vice versa

ICanonical Task Sets

5 one-to-one
one-to-many

3 many-to-one
many-to-many

5 one-or-more-transducer

I
I 3-61

I

Transducer Tasks

Actor/Server Task Hybrid

Both Active and Passive

Body textually similar to Server Task

React to external requests

Infinite loop encapsulating
selective wait statement

Entries cn-respond to exported services

Terminate alternative

Generates external requests for services

Examples

Message Router Task
Secretary Task

3-62

Cc cLrolling Ada Task Start-upI

I Task Activation

I Elaboration of task's declarative part

I Automatically after elaboration of parent's declarative part

I Occurs collectively for every task object
defined in the implied parent's declarative partI

Parent's execution suspendedI
3 Task Execution

I Execution of statements in task's body

Begins after the activation of ever/ task
in its activation coilection

I Language provides no technique for controlling
the start of execution for tasks

Programming Mechanism

select
accept START,

or
5terminate,

end select;I
Place initiatati-' code after selective wait

'Very effective when a tag parameter has to be passed 3-63

Canonical Ada Task Sets

Set Description Notation Example

one-to-one CuLst o me r! e,-v/er

OActor,,__ COlr

one-to-,mny Custorner/Nultiple Servers

many-t-n Producer/Buf fer/Consumner

Actor"

manv- c-maL:,nv iu It ce & :tcrner-::
Nulti-ie Server-D

(Actor .--. £rr

Actor +--fStrver)

iActor i

-one- r-ore -t r-nscu c er -issce Sendier,,
NleSae C I Spa t c re r.,

Nes~qe ece"ver

3-64 T~i
Actorr jucMr - v r

Graceful Ada Task Termination

I (con't)

I
Termination of Task Sets

3 Server Tasks present no problem

g Actor tasks need programmed termination mechanism

Incumbent on Server task to trigger termination
fo its dependent Actor tasks

I
Programming Mechanism

Export entry from Server task which will trigger the
termination for the task set

I Use BOOLEAN entry parameter between Server and Actor(s)
to indicate wrien Actors should terminate

I3
I
3
I
I

I 3-65

I

Graceful Ada Task Termination

Task Completion

Task has finished executina the statements in its body

Task Termination

(3 scenarios)

1. FOC has no dependent tasks

Y. ' tre.. n Un e rh n i t77Pie Te .'

2 FOG has dependent tasks that have already terminated

FOL terrmna7~?ts when/ it com7pletes its executic2n

r- O has dependent tasks that have not terminated

a. FOO has completed
FcX? tern7mates ,,'i n .// of zt &e J. ~A

t &fF17i7 4 t,1

b F0 's execution is at open terminate alternative
,*, o ter77i7tes ///7d 0h7/. It t,e / L1 W1,C

* ,,;'-.o/7 , ./ M,, fft I ~Jpe.ndcs on t,/is .r7aster ;s"
366 ~ ,r>, d.' terrnpated or s mry/ ... at anop n

151
tern mat .alt rnat vIS

Conclusions (con't)

Actor/Server task pairs occur
in alternating patterns

A Programming mechanism for

controlling the start of execution
of tasks is usually necessary

It is incumbent on Server tasks
to trigger the termination of their
respective dependent Actor tasks

Encapsulating tasks within a package
and then exporting a set of procedural
interfaces which parallels these tasks'

entries is quite effective

Complex concurrent systems can be
3 constructed using three simple steps:

1. Enumerate the fundamental task sets
2. Identify overlapping areas of these taSk sets
3. Dovetail task sets together 3-67I

Conclusions

Most Ada Tasks are either
Servers or Actors

Ada Tasks cooperate and function in sets
rather than as stand-alone program units

The majority of concurrent systems can be
developed using a finite set of fundamental

(canonical) Ada tasking building blocks

Canonical Task Sets

one-to-many many-to-one

one-to-one , @

AActor

many-to-many

-~"-.cne-or-more- tr. risducer
(Actor

Actor -Tr, ' . . seryer)

3-68 c .(-i erv.r

I

Exceptions

No formal technique exists for incorporating and handling
exceptions during the design phase of a system. This makes it
difficult to take advantage of the exception capabilities of the
Ada language

Exceptions are used to indicate exceptional conditions durina
program execution

3 Exceptional conditions are not restricted to errors. They can be
used to indicate 7n.v condition (program state) that has a lowel

I probability of occurrence

Exceptions can be propagated explicitly and implicitly.
However, implicit propagation tends to hide the propagationi path, making testing and integration more difficult

Exceptions can be a mechanism for controlling program flow
I They initially provide an implicit ko to the end of a block

S The use of exceptions can impact the testing and integration

phases of system development

I
I

I

336

AIM

COMPONENTS

Ada supports and encourages reusable software components

This aspect of the language can be seen in the design and

implementation of the AIM

Some AIM components:

Help exported
Queue could be exported - generic
Stack exported - generic
String could be exported
VT imported

3-70

I
I

String Manipulation
There is a tendency to get caug/d up in the concept of typing

i and string lengths

I Design procedures and functions with unconstrained string
parameters to make it easier to use string slices as parameters

The procedures and functions become less susceptible to design and5 implementation changes

This can reduce string manipulation prior to making the call on3 the procedure or function

A string utility package can be implemented to perform many of3 the string manipulation functions required by the system

I
I
I
I
I
I

I

Exceptions

Typically, source level debuggers provide a program breakpoint
when an exception is encountered during program execution

If some exception occurrs too often, the constant breakpoints
can be a source of rritation to the test engineer

While it is possible to override this feature of the debugger,
this is normally not feasible due to testing requirem
particularly when the standard pre-defined exceptions are
involved

Any exception which is raised relatively frequently is not a true
exceptional condition and, therefore, should be handled in a
different manner within the design and implementation of the
system

3-72

I
I
I Transporting the AIN

Procedures Followed

I Physical transfer

U Source coce -

3 240 separate 1, 7>es

I Accomplished using the text transport tool Pager
P-qgerwas adapted from a tool in the SIMTEL-20

repository

ANSI magnetic tape support on both machines

It took one afternoon to accomplish the entire
physical transport

I
I
I
I
I

1 3-73

I

Transporting the AIN

The AIM was transported from the DG ADE to
the VAX/VMS ACS at the source code level

The transport took 2.4 man-months

Procedures Followed

Rehost Problems

Conclusions

3-74

I

Transporting the AIN

A Feedback Loop

3 GOAL
Have the same source code on all systems except for the parts3 explicitly system dependent

3 Once the rehosted AIM passed formal testing it was re-rehosted

into the ADEI
How many times does one need to do this before the goal

is met?

3 Configuration management nightmare

I Exactly the same code on both syste~s except for the system
dependent parts

21000 lines vs 1000 lines

II
I
I
I
I

3-75I

Transporting the AIM

Debugging

How do you debg a completed system ?

Break the system back down into modules and proceed with
module testing

Regenerate tests to test particularly offensive modules

Use a source level debugger

First Choic: Use the debugger

One Man-Month to completely debug and
pass the integration tests

3-76

I
II AIM

I Rehost ProblemsI

Compiler/Diebugger Prob lems

3 DEC BETA Compiler

returning aggregates and string constants
from a function

I calling functions during variable initialization

I get for integers does not scan
over blanks and newlines

different from the DG

Discriminant record with positive discriminant
raises numeric error

I String problems in the debugger

I Discriminant records and the debugger

3Extremely complex interface to system services

3 Same aggregate problem with Parse tables
as on the DG

When trp rn to define a very9 large agregate

I
I 3-77

I

Transporting the AIM

Rehost Problems

Code Work-Arounds

Program Termination

3-78

I
I
I Transporting the AIN

I System Dependencies

Computer Terminal Control and Communications

I Open the Computer Terminal

no echo
no bufferingI

Close the Computer Terminal

I reset back to its original condition

U
Read Data From the Terminal Keyboard

I at least one character at a time
no echo

must not block the calling process
must nlock the calling taSK until at least one character is 4ailableI

Write Data to the Computer Terminal Display

sends an ANSI strng to computer termine' !lisolay
no buffering

no interpretation
ocurrs immediately

I
I

3-79

I

Transporting the Ait'
System Dependencies

The AIN h~as four areas with system dependencies

Com cuter Term inal Control and Communications

APS3E Process Control and Communications

Environment Variable~s

,Ada length Representation Clause

3-80

Transporting the AIN
System Dependencies

Environment Variables

I Getting the Terminal Name

I Names of Files
Terminal Capabilities Filename (T CF)

Initial Script Filename
Parse Table FilenameI Help Filename

Ada LENGTH Representation Clause

for TASKJ'4AME'STORAGL-SIZE use TASK.S 'IZE,

3-8

Transporting the AIM

System Dependencies

APSE Process Control and Communications

Create a Son Process

IPC channels will be specified as the process' standard input and output
dependent on the AIM for its existence

Destroy a Son Process

pending I/0 requests are dequeued
IPC channels are deleted

anything that is rinning in the son is stopped immediately

Read a Line From a Son

calling task is blocked until a line is available
calling process is NOT blocked

line is read from the IPC file associated with the sons standard output

Write a Line To a Son

call 1ng task s not. blockeu, the data is queued to the !PC file associated
with the sons standard input

Various Status and Information Queries

3-82

1 System Dependencies Confusion

I _ _ _ _ _ _._ _syt

4 32 KByjte

* WITH/USE/PENAMES used everywhere

I Source available for everything except
system

Sizes are specification sizes

3-83

Transporting the AIM

Iehost Problems

Module Testing Baggage

Representation Clauses

for TASK'STORAGESIZE use TASK-SIZE,

Complexities relating to System Services

3-84

The thng e system dependent an moy~ui II) change wheni

max-.filename-l.ength :C~iSTAKT positive :x 31;
- FIOS IS max f itIename Ien.

max-.pvicess...na...length :COt1STAKT positive :-31;

3 TYPE chorviel.range IS PROE 0-255; -O /VS S max charnel no.

TYPE ptoce s.id IS
FEOIpid : nteger; -FEOS/VS Process 10

i n-channe I chaneI r iw".a ; - OS/JS input chamvel no.
outLroarnel chou iI.-vnge; - OS/VS out chano I no.
in..f i len. string(I-max..fe lenom....ength);

- anut 10C f iIn t
in-fileam-..ength :positive;

out-filename :string(I maxc-ilerame-..ength)
- output IPC tilenome

out-fi leramt..Jength :positive,

3 ~ ~~processarme :str ing(1..max-.process-..mme-.Jength)
pt-ocess...name-length positive;

END FEOO

EMIs$ppoez

3-8

PFCKFRG sijsdepprocess I S

TYPE io-.stotus IS (io..O, 1O..Dther)

TYPE prores.id IS PRIVATE;

POCDJE C1-m t..Process
(process -.IM OUT procms..id

P~ILF~ tood.f roa.4xrocess
(process III process...d;*
out-data OUT string;
length OUT notuai;
status OUT lo..status)

PFK)CEIYJE witm...to...process
Cf rcs: INI process-.id;
data :IN string;
status :OUT io-.status)

FUNCTION' ,e-line FTI.Ut1 string;

F1IMCTIOti pr-ocss..axists(process :IMI process-.id) ETUFV bolean;

PROCEDLE process-.nome
(process :INI process..id;
prc s...ne :OUT string;
namelast :OUT naturl);

FLIMICTIO!1 sons...exist(process :III proCess..id) ETURi boolean;

PFOCEDUF destroy-.process
(process : N OUT process-..d)

PROCELLWE su ic ide;

3-86

M~ I 1,1TE

I These things: are sys tee dependent and wNa(aui I I) chane whe

mox.J IlIenome-I .erigth :CON~STANT pos it ive 3~ 1;I - M maS x filename len.

.x-ocvss.rx=e..luth :COIISTftiT positive :*15;

TFIK ThYE process..pusher IS
ENTRY go-. process : IN proceslid)3 END procss-.pusher;

TRSI(TYPE process-.buf fer IS
ENTRY go;
ENTRY eriqueue(data :IN striNg>IENTRY g--t(data OWT ;(ring;

fast OUT natu~ral;
done OUT boole);3 EMTY quit;

EM Frocess.kuf far;

TYPE process..buf ferpo inter IS FKXESS pr-ocess.buf for;
TYPE pi-oc s&.pusher-.po inter IS ACCESS process..pusher;

TYPE process..id IS

I pid :starlet.procss-id-.type; - VX/A1S Process ID
in-canel striet.chawnei-.type.; - VRX/'JS chcrne I no.
outcharwral staI et. chavbe I -type; - VFIXA channel no.

I -Logical nam of input mailbox
in..fi Ier=At...ength :positive;

out-fi ename :string(1. .sox-fJ Ietiaie-iength);
ou~i~ea~e..lngt: psitve;Logical name of output mai lbox

process-ncme b string(1. .ma~x_,rocess..rbmaeienth)I proce s~rxae..Iength :positive;
watcher process-.pusher-.pointer;
buffer proeess..buffer..pointer;

EV nysdep~proess;

3-87

WITH starlet;

PfCKFIE sajsdep...x-cess I S

TYPE io-.stotus IS (ia...D, IO..othr

TYPE pr oces-.i d I S PA IVRTE;

M-OIMIM~4 createpr-ocs
(process :IN OUT proct s.id)

FMMF read. from-p.rocess:
Cf poss 1i! ;. -.. ess-Id;
ouL4ato OUT string;
length OUT natural;
status OUT Io..status)

Pm CMPFE wi te..to..p-ocess
< process :IN process-.id;

data :III string;
status :OUT Io..status)

Ftt'ITIOtI new-.I ine FETURN string;

FUNICTIONI process..axists(proc s IN procss-id)RETURN boolean;

PROCEDUR process..rome
(process -.IN procesL..id;
process..rnaa: OUT string;
nome....ast :OUT natural);

FVICT IOM sons...xist(process :IN pr-ocess..id)RETURN boolean;

PFOCEDJlE des troyprocess
(process II WYT proc s..id)

PROCEDUFE su Ic ide;

process-cre t i or-ernor EXCEPT ION;

3-88

GAlS Related Issues

Terminals

Processes

I InterproceS Communication

* Files

3-8

Transporting the AIM

Conclusions

The AIM transported in 2.4 man-months

Most problems were due to

compiler bugs
inappropriate assumptions

a terminal control and communications
a process model, control, and communications

The transport was assisted by

using ACVC validated compilers
designing for transportability
using a source level debugger

Interesting issues were raised regarding

Debugging a completed system
Interfaces with host OS system services

Feedback loops

3-90

CAIS Related Issues

3 Terml;ng/s

Major Differences from CAIS

Single terminal only

Terminal packages are independent

3I9

CAIS Related Issues

Terminals5

Design Approach

Target "asynchronous ASCII" terminals

User Level

SCROLL-TERMINAL
PAGE-TERMINAL
FORM-TERMINAL

Simulation Level

V I RTUALTERM I NALCONTENTS
RED ISPLAY

Translator Driver Level

DRIVER
TCF

SYSDEP
V IRTUALTERM I NALI NPIJT

Terminal Capabilities File

3-92

CAIS Related Issues

Termnals

* Page Terminal Differences from CAIS

Exclusions

SetEcho/Echo
Vertical tabs

Some graphic renditions
I Bold, Faint, Underscore, Slow-Blink, Rapid-Blink

Insert-Space
Grnphi cRendi tionSupport

Additions

Open/Close
Enter/Ex~t insert-Mode
Udat eScreenline ran e

UpdateLine , mter
UpdateCursor
RedrawScreen

II

3-93I

CAIS Related Issues

Termindls

Scroll Terminal Differences from CAIS

Exclusions

Set.Echo/Echo
Vertical tabs

Position/Si-e is a column number

Additions

Open/Close
UpdateIine

3-94

I
I

I CA S Related IssuesI
TerminasI

System Dependencies

Open the terminal for binary I/0, no echo

3 Close the terminal

3Get a string from the keyboard with no echo and no translation

i Get TCF Name

Get Terminal Name

Valid Character determination input a output

I
I
iI
I
I
I
I

3-95I

CAIS Related Issues

Term1179/

Form Terminal Differences from CAIS

Exclusions

Function-Keys function
Area-Value type

No-Fill, FBiih.-Spaces, etc,

Form-Type type

Additions

Open / ClOs e

Assumption that Are&..Quali1fier-Reuires-.Space

Renaming

Next-.Qualified..Area is named T~b
Erase-Form is named Erase-..Display

3-96

I
I

I! CAIS Related Issues

Pr'ocesse5

3 CAIS Interfaces

Starting a process

procedure SPAWN-PROCESS (...);
procedure INVOKEPROCESS (...);

procedure CREATE-JOB (..);

I Parameters to and from a process

I procedure AWAITPROCESSCOMPLETION (.),
procedure APPENDRESULTS (...);
procedure WRITE-RESULTS (...);

procedure GET-RESULTS (...);I procedure GET-PARAMETERS C...);

Process control

procedure ABORT-PROCESS (...);
procedure SUSPEND-PROCESS (...),

procedure RESUMEPROCESS (..),

3 Process attribultes

function STATUSOFPROCESS (...) return PROCESSSTATUS,
function HANDLES-OPEN (...) return NATURAL,

function IO-UNITS (...) return NATURAL,3 function START-TIME (..) return TIME;
function FINISHTIME (...) return TIME,

function MACHINLTIME (...) return DURATION;

I
I3 -97

GAIS Related Issues
Processe5

Model

Inherit environment from Parent

Communicate with Parent
via STANDARDJINPUT and STANDARD-O.UTPUT

3-98

I
I
I

CAIS Related Issues

Files

AIM requires simple Ada TEXT-1O & a file name

II
I
I
I
I
I
I

I
I
I
I
I 3-99

CAIS Related Issues

/nlerprocess Communica1ion

Data General IPC

Asynchronous with Files

VAX IPC

Synchronous with Mailboxes

CAIS IPC

Synchronous (and Asynchronous?) with Queues

3-100

Conclusions
Lifecycle

More time was spent in design and implementation than the
I models predicted

I The AIM did not require as much testing as the models predicted

I If more time is spent in requirements definition and design, then
less time will be spent in integration and testing

Using a source level debugger reduced testing and increased
i productivity

I Design

1 OOD works fairly well except for data flow

I 000 supports software components

Some other form of data flow design is needed

5 A design technique should support:

I a isolation and encapsulation (transportability)
@ data and control flow specification
a error condition identification and handling
a data structure definition
a POL

I
I

3-101I

Conclusions

Environment

The DG toolset and DEC toolset are similar, however, certain
features of specific tools increase designer/programmer

productivity significantly

The DEC ACS is more integrated in the environment than the DG
ADE

Ada Language

Ada promotes transportability

It is easy to get caught up in the idea of typing

There are some problems with tasking

Rehost

Planning for transportability works

Careful consideration must be given to the models of the
underlying operating system interfaces and intertool

communications
and even then there will be problems

There are interesting problems associated with debugging a
completed system that has been rehosted

3-102

I
Conclusions

CAIS

The CAIS terminal interface will work
I at least on systems with asynchronous ASCII terminals

5 There may be serious problems implementing the CAIS process
control and communications (IPC) interfaces in modern

operating systems

More generally:
The L eist Common Venominator must be explored

UNIX
VAX/VMS

ISome IBM operating system
LISP MachineI (micro ??)

I
I
I

3-103

I

U

U

I

I

U
I
3
I
I
I

3-104 1
I

:11 III L 1 .1ii

Anivi -7

VOLU.. -

_.C.~~~ 2-xMS.30

Mc.Knvnneent -e:a e r 3

U .nCRCAivsi

3U0

Is a .-- ear o - Z ame

Z":?SM is a 72CiStere'd tadem~arnt of, -.aa General.Cza::.

:~S~M/CZZCis a trad~emrnk of Dat-= Genera-' ~

ROLM i.s.a rec:s:ered trademarK zft ?iCL.M

VAX is a tracie~arA of 'lic ital.~~~nn :-'~-

VM s a t a e ma r , c t ai:::a -~i : en: C---'--

3-106

U

CONTENTS

S CHAPTER 1 INTRODUCTION

1.1 PURPOSE . 1-11 1.2 BACKGROUND 1-2

CHAPTER 2 AIM INTERFACE REQUIREMENTS

1 2.1 GENERAL 2-1
2.2 TERMINAL COMMUNICATION 2-1
2.2.1 Echo Control 2-2
2.2.2 Non-Filtered Keyboard Read 2-2
2.2.3 Non-Filtered Display Write2-3
2.2.4 Screen-Oriented Facilities2-4
2.2.5 Exclusive Access 2-4
2.2.6 Terminal Identification 2-4
2.3 PROCESS CONTROL AND COMMUNICATION 2-4
2.3.1 Process Initiation 2-5
2.3.2 Process Termination2-5
2.3.3 Process Suspension/Resumption 2-5
2.3.4 Process Status Query 2-5
2.3.5 SubProcess Query 2-6
2.3.6 Transparent Interprocess Communication 2-6
2.4 DATABASE SERVICES 2-6
2.4.1 File Manipulation 2-6
2.5 GENERAL ENVIRONMENT ISSUES 2-7

I CHAPTER 3 ADA LANGUAGE SYSTEM INTERFACES

3.1 GENERAL 3-1
3.2 TERMINAL COMMUNICATION 3-1
3.2.1 Echo Control 3-2
3.2.2 Non-Filtered Keyboard Read 3-2
3.2.3 Non-Filtered Display Write3-2
3.2.4 Screen-Oriented Facilities3-3
3.2.5 Exclusive Access 3-3
3.2.6 Terminal Identification 3-3

PROCESS CONTROL AND COMMUNICATION 3-3
3.3.1 Process Initiation 3-4
3.3.2 Process Termination 3-4
3.3.3 Process Suspension/Resumption 3-4
3.3.4 Process Status Query 3-5
3.3.5 SubProcess Query 3-5
3.3.6 Transparent Interprocess Communication 3-6
3.4 DATABASE SERVICES 3-8
3.4.1 File Manipulation 3-8
3.5 ENVIRONMENT SPECIFIC ISSUES "3-10
3.5.1 ALS "Break-In" Facility 3-10
3.5.2 Broadcast Messages 3-11

2-107

3.5.3 Bypassing KAPSE Services For Terminal Control 3-11
3.5.4 Constraints On User Programs 3-11
3.5.4.1 APSE Program I/O 3-11
3.5.4.2 MASTERIN, MASTER OUT, And MESSAGE OUT . . 3-12

CHAPTER 4 ADA INTEGRATED ENVIRONMENT INTERFACES

4.1 GENERAL 4-1
4.2 TERMINAL COMMUNICATION4-1
4.2.1 Echo Control. 4-2
4.2.2 Non-Filtered Keyboard Read4-2
4.2.3 Non-Filtered Display Write4-2
4.2.4 Screen-Oriented Facilities4-2
4.2.5 Exclusive Access o.4-3
4.2.6 Terminal Identification4-3
4.3 PROCESS CONTROL AND COMMUNICATION 4-4
4.3.1 Process Initiation 4-4
4.3.2 Process Termination. 4-5
4.3.3 Process Suspension/Resumption 4-5
4.3.4 Process Status Query 4-5
4.3.5 SubProcess Query4-5
4.3.6 Transparent Interprocess Communication 4-6
4.4 DATABASE SERVICES 4-7
4.4.1 File Manipulation 4-7
4.5 ENVIRONMENT SPECIFIC ISSUES 4-9
4.5.1 Bypassing KAPSE Services For Program Control . . 4-9
4.5.2 Broadcast Messages 4-9

CHAPTER 5 PROPOSED MIL-STD-CAIS

5.1 GENERAL 5-1
5.2 BACKGROUND 5-1
5.3 TERMINAL COMMUNICATION 5-2
5.3.1 Echo Control 5-2
5.3.2 Non-Filtered Keyboard Read5-3
5.3.3 Non-Filtered Display Write 5-3
5.3.4 Screen-Oriented Facilities 5-4
5.3.5 Exclusive Access 5-4
5.3.6 Terminal Identification 5-5
5.4 PROCESS CONTROL AND COMMUNICATION. 5-6

5.4.1 Process Initiation 5-6
5.4.2 Process Termination... 5-7
5.4.3 Process Suspension/Resumption 5-7
5.4.4 Process Status Query 5-8
5.4.5 SubProcess Query 5-8
5.4.6 Transparent Interprocess Communication 5-9
5.5 DATABASE SERVICES 5-9
5.5.1 File Manipulation 5-9
5.6 ENVIRONMENT SPECIFIC ISSUES 5-11

3-1081
!

!
I

CHAPTER 6 ADA DEVELOPMENT ENVIRONMENT INTERFACES

6.1 GENERAL 6-1
6.2 TERMINAL COMMUNICATION.............. 6-2
6.2.1 Echo Control 6-3
6.2.2 Non-Filtered Keyboard Read 6-3
6.2.3 Non-Filtered Display Write 6-5
6.2.4 Screen-Oriented Facilities 6-5
6.2.5 Exclusive Access. 6-5
6.2.6 Terminal Identification 6-5
6.3 PROCESS CONTROL AND COMMUNICATION 6-6
6.3.1 Process Initiation 6-6
6.3.2 Process Termination 6-7
6.3.3 Process Suspension/Resumption 6-7
6.3.4 Process Status Query 6-7
6.3.5 SubProcess Query 6-8
6.3.6 Transparent Interprocess Communication 6-8
6.4 DATABASE SERVICES 6-9
6.4.1 File Manipulation 6-9

I APPENDIX A AIM INTERFACES SUMMARY

APPENDIX B ARPANET COMMUNICATIONSI
APPENDIX C GLOSSARY

APPENDIX D REFERENCES

D.1 GOVERNMENT STANDARDS D-1
D.2 GOVERNMENT SPECIFICATIONS D-1
D.3 OTHER GOVERNMENT LDCUMENTS D-2
D.4 SPECIAL SOURCES D-3
D.5 OTHER PUBLICATIONS D-4

I

3 3-109

I
II

FOREWORD 3
This document is the final version of the Interface Report produced
by Texas Instruments, developed under Navy contract number I
N66001-82-C-0440, CDRL number A010. This report, consisting of three
volumes, contains several modifications to previous information as
well as new information concerning experiences and implementation
since the interim version of this report was produced.

Volume I, "Environment Interface Analysis", is an analysis of

environment interfaces issues. The information in it is
primarily a recap of data contained in the interim interface I
report. However, information covering the Data General
Ada(tm) Development Environment (ADE)(tm) has been added.

* Volume II, "Design and Implementation Experiences: The AIM",

covers design and implementation experience gained through
work on the AIM. 3
Volume III, "Transporting an Ada Software Tool: A Case

Study", is a case study of the rehosting of the AIM from a
Data General Eclipse MV/10000(tm) to a VAX(tm) 11/785. It is U
totally new and contains information on the rehost effort
including transportability issues. I

John Foreman is the project manager for this effort. The research
for this report was performed by Jerry Baskette, Mark Borger, Thomas
Duke, Stewart French, Tim Harrison, and Melody Moore. 5

I
I
U
I
I
I

3-ii0 1

I

i
I
I
I

I
CAPTER 1

INTRODUCTIONn
1.1 PURPOSE

An Ada program requires clear and well-defined interfaces to interact
with an Ada Programming Support Environment (APSE). To meet the
goals of interoperability and transportability, an Ada program
intended to execute under more than one APSE should interface equally
well with each system. To accomplish this requires a detailed study
of existing and planned APSE features mapped against the requirements
of the Ada program. Through analysis, APSE interface strengths and
deficiencies are revealed.

This report is an analysis of the APSE Interactive Monitor (AIM)
developed by Texas Instruments under NOSC contract N66001-82-C-0440.
AIM requirements are mapped against the designed features of four
systems:

* U.S. Army Ada Language System (ALS),

• U.S. Air Force Ada Integrated Environment (AIE),

the MIL-STD Common APSE Interface Set (CAIS) currently under
development by the KAPSE Interface Team (KIT),

the Data General AOS/VS operating system running the Ada
Development Environment (ADE).

The analyses of the ALS and the AIE were performed with design
information prior to completed implementations of those systems.
Similarly, the CAIS interfaces compose a draft standard subject to
change.

nU
3-11lI

INTRODUCTION
BACKGROUND

1.2 BACKGROUND

The APSE Interactive Monitor (AIM) is a tool designed to act as an
interface between the user of the APSE and the programs the user
executes in the APSE. It enables a user to execute multiple APSE
programs from a single terminal while keeping their interactive
inputs and outputs separate both logically and physically. For a
complete description of AIM functionality, consult [TI83A].

The primary objective of the AIM project is to assist the KAPSE
Interface Team (KIT) in studying KAPSE interface issues while
secondarily producing a useful tool for APSEs. The reader should be
familiar with the AIM Program Performance Specification [TI83A], the
ALS System Specification [SOF831, the AIE System Specification
[INT82], the ADE [DAT84], and the draft MIL-STD CAIS [KIT85].
Additional AIM references include: [TI83B], [TI83C], (TI83D],
[TI83E], [TI83F], CTI83G], [TI83H], [TI85A], [TI85B], [TI35C],
[TI85D], [TI85E], [T185F], [TI85G], and [TI85H].

3-112

1
I
I
I
U

CHAPTER 2

I AIM INTERFACE REQUIREMENTS

1 2.1 GENERAL

This chapter outlines the KAPSE interfaces the AIM requires and the
rationale behind them. Described below are general issues and ideal
solutions to AIM implementation problems. In the n.xt four chapters
of this report, AIM requirements are mapped against ALS, AIE, CAIS,5 and ADE facilities.

The AIM requires well-defined interfaces in the following areas:

I 1. Terminal Communication

2. APSE Process Control and Communication

3. Database Services

2.2 TERMINAL COMMUNICATION

The AIM interacts with page mode physical terminals; these
screen-oriented terminals transmit and receive single characters at a
time and possess extended two-dimensional functional capabilities.
The capabilit.4r- of a page mode terminal intended for use with the
AIM must be a functionally compatible subset of the standard5 capabilities described in [ANSI79].

The AIM requires the following support from the KAPSE terminal

communication services:

I 1. Echo Control

2. Non-Filtered Keyboard Read

3-113

AIM INTERFACE REQUIREMENTS
TERMINAL COMMUNICATION

3. Non-Filtered Display Write

4. Screen-Oriented Facilities

5. Exclusive Access

6. Terminal Identification

2.2.1 Echc Control

Description: The ability to enable and disable character echo on the

display as characters are input from the terminal keyboard.

Rationale: Screen echo may be controlled from a variety of sources:

* Directly in the terminal

* From a communication line (i.e., modem)

* From the KAPSE

* From the host operating system

* From an APSE program

To permit asynchronous update and to control the screen display, the
AIM requires the ability to disable echo in order to place characters
in the correct screen location. For example, if the cursor is
involved in a write operation at the top of the screen, and a
character intended to follow a command prompt at the bottom of the
screen is typed from the keyboard, the ne-4ly-input character could be
Pchoed in the middle of the write transmission unless the AIM can
disable character echo. The AIM itself should receive the character
and echo it in the appropriate place. The KAPSE terminal
communication services should permit echo disabling when possible in
order to facilitate this diverse control.

It should also be noted that some interactive editing tools (such as
EMACS) cannot be implemented unless echo disabling and non-buffered
I/O are provided. These tools must also be able to intercept data
without echo in order to control the display of data on the screen.

2.2.2 Non-Filtered Keyboard Read

Description: The ability to read characters from the keyboard of a
terminal with no interpretation or translation by the environment.

Rationale: The AIM belongs to a group of highly interactive programs

3-114

l
£ AIM INTERFACE REQUIREMENTS

TERMINAL CCMMUNICAT:ON

Uwhich ideally should have access to characters immediately as they
are generated by the keyboard. In order to afford maximum control of
terminal I/O to these programs, there should be no interpretation of
key sequences entered at the host OS or KAPSE level; interactive
programs provide their own interpretation. Buffering usually implies
an interpretation of at least one character (the "end of buffer,"
mark, usually carriage return). This rationale does not preclude
buffering which supports the desirable type-ahead capability.
Characters may be piped into a channel to wait for reading and still
be accessible singly.

I In addition to the AIM, programs such as screen editors and powerful
interactive command language interpreters requirecharacter-by-character input for implementation. This need isfurther supported in [COX83]:

"Since it would be unreasonable to make it impossible to

implement screen oriented text editors or advanced
command line interpreters in the APSE, immediate
acquisition of input characters must be provided. The
Ada language definition avoids this issue and leaves the
Ada programmer at the mercy of side effects arising from
system buffering of I/O. This I/O facility should
therefore be provided to Ada programmers through the
KAPSE interface." [COX83]

I/O buffering also affects the AIM updating mechanism. The cursor is
always positioned at the current read or write location on the
screen. The AIM updates several viewports asynchronously while
allowing the user to enter keystrokes destined for a particular APSE
program's input. Consequently, the AIM requires the freedom to move

the cursor immediately to any location where an I/O transaction is
destined to occur. If characters are buffered by the terminal (i.e.,
transmitted only on depression of carriage return), the AIM waits for
the input of an entire character string before releasing the cursor
for I/O elsewhere on the screen. This buffering would limit the AIM
asynchronous screen updating mechanism, because the AIM would not
receive each character as it was generated.

2.2.3 Non-Filtered Display Write

Description: The "Lilii tco wci.e crai~d,..ers to the terminal display
device exactly as they are represented in the generating program.

I Rationale: The AIM must be able to write one or more characters to
the screen with no extraneous characters (such as line feed)
autom~tically appended, and no character translation operations
occurring. Terminals are controlled by specific protocols
transmitted by the AIM and interpreted by the display device.

3
I

3-115I

AIM INTERFACE REQUIREMENTS
TERMINAL CC14RUNICATION

Terminal communication protocols consist of character sequences in
which the relationships between specific characters are given
meaning. Adding or removing any character in a sequence may alter
its meaning.

2.2.4 Screen-Oriented Facilities

Description: The ability to perform operations such as delete-line,
delete-character, insert-line, insert-character, clear-screen.

Rationale: The AIM requires the control to position or move the
cursor and perform simple editing functions on its two dimensional
display. With these minimum capabilities, the AIM can simulate other
more complicated editing functions such as insert or delete line.

2.2.5 Exclusive Access

Description: The ability to obtain exclusive access to the user's
terminal.

Rationale: The ATM needs to be able :o manage all c'ata destined for,
or received from, the terminal. If the AIM cannot protect the screen
from other programs' I/O, any APSE program could write to the screen,
perhaps causing undesirable data transmissions to collide with or
overwrite AIM transmissions.

2.2.6 Terminal Identification

Description: The ability to obtain specific information concerning
the terminal's capabilities and features.

Rationale: Some standard method of naming terminal types must exist
to enable terminal capabilities to be mapped into a database file.
The AIM must be able to retrieve this information and identify the
correct physical terminal in order to initialize the correct logical
terminal.

2.3 PROCESS CONTROL AND COMMUNICATION

The AIM provides the user with the capability of starting, stopping,
resuming, and otherwise controlling processes and subprocesses.
Processes must be able to send and receive information to and from
other processes. Several requirements are made of the environment to
accomplish this communication:

1. Process Initiation

3-116

I
AIM INTERFACE REQUIREMENTS

PROCESS CONTROL AND COMMUNICATION

1 2. Process Termination

3. Process Suspension/Resumption

4. Process Status Query

5 5. SubProcess Query

6. Transparent Interprocess Communication

1 2.3.1 Process Initiation

Description: The ability to initiate the execution of a program and
execute in parallel with the resulting invoked process.

Rationale: The AIM controls APSE programs and subordinate programs
spawned from these programs through this interface. The AIM user may
invoke APSE programs from the AIM and control their execution. The
above program control functions are defined as basic APSE
requirements in "STONEMAN" (DOD80] and therefore should be common to
all APSEs.

2.3.2 Process Termination

5 Description: The ability to terminate the execution of a subordinate
process i.e.--one that has been invoked by the AIM).

Rationale: The AIM requires the ability to terminate any process
that it invokes and any subprocesses spawned by that process.

2.3.3 Process Suspension/Resumption

Descriotion: The ability to suspend the execution of a subordinate
process and later resume the suspended process.

* Rationale: The AIM requires the capability to control the execution
activity of any process that is subordinate to it, in order to
provide users with as much control as possible over their programming
environment and the activities taking place in it.

2.3.4 Process Status Query

Description: The ability to determine the status of a subordinate
process, typically, information such as Awaiting-1O, Suspended, or
Running.

3 Rationale: The AIM provides process status information, via a
viewport header, for any APSE program whose corresponding AIM window

I

3-117

AIM INTERFACE REQUIREMENTS
PROCESS CONTROL AND COMMUNICATION

is being displayed on the physical screen; furthermore, the AIM's
Info Utility displays process status information for any of the
currently active APSE programs subordinate to the AIM.

2.3.5 SubProcess Query

Description: The ability to determine whether a process (subordinate
to the AIM has any processes that are subordinate to it.

Rationale: The AIM needs to determine all activity in the system
that is a result of its own execution. This activity necessarily
includes any processes that have come into existence because of
processes invoked by the AIM itself. The AIM queries the program
subprocess structure to determine subordinate program information,
and examines this structure to manage programs executing under its
control. For example, the user may not exit the AIM unless all
subordinate programs have terminated. The AIM determines which
programs and subprograms are currently executing by examining its
subprocesses.

2.3.6 Transparent Interprocess Communication

DescriPtion: Interprocess Communication is an important AIM
intertace. The AIM "captures" terminal-directed output from APSE
programs and provides program-directed input from the terminal.

Rationale: The AIM requires that all data be received in the same
order as it was transmitted, in essence, a data "pipe". This pipe
scheme should be totally transparent to the APSE program running
under the AIM; the AIM should not in any way affect the
implementation of APSE program I/O.

Since an APSE program is defined as one which only uses KAPSE
services, the AIM requires APSE programs to use only Standard In and
StandardOut for terminal directed I/O. An APSE program which
bypasses the KAPSE to use underlying host services is considered
erroneous, and may produce undesirable results when executed under
the AIM. Only one terminal may be associated with an APSE program,
since there is no method of identifying multiple terminals.

2.4 DATABASE SERVICES

2.4.1 File Manipulation

The AIM manipulates database files during initialization and
execution. The packages TEXT 10, SEQUENTIAL 10, and DIRECT 10
defined in [DOD831 provide the AIM with clear interfaces for f-le
manipulation. Most APSE's augment the I/O capabilities defined in
the Ada language with extended features. The following is a list of

3-118

U

I AIM INTERFACE REQUIREMENTS
DATABASE SERVICES

IAIM functional requirements which the KAPSE database services should

fulfill:

1. Open/Close a file for reading/writing

2. Read/Write a file

33. Create/delete a file

Rationale: During its initialization the AIM reads information from
specific predefined KAPSE database files: the LALR parse table file,
the AIM initialization command script file, and the Terminal
Capabilities File; furthermore, the AIM must open and read the Help
file when on-line help is initially requested. The KAPSE database
services must support opening, reading, and closing these database
files.

The AIM also requires additional database services during execution.
The AIM supports the notion of input and output pads on a per window
(program) basis; these pads are merely APSE database files that
respectively capture all input and output transferred between an
KAPSE program executing in the environment and its associated AIM
window. The AIM requires a method of creating, deleting, and
controlling pad files from the KAPSE database services.

I2.5 GENERAL ENVIRONMENT ISSUES

Although the AIM is intended to be transparent to APSE programs, it
is possible that APSE programs may be required to follow some
guidelines in order to interface with the AIM, especially in the area
of terminal I/O. This section describes some restrictions that must
be imposed upon programs which are intended to execute under the AIM.

If the appropriate KAPSE services are provided by some environment,
the AIM mechanism required to intercept program I/O will not impact
APSE program design. APSE programs should need no special I/O file
parameters to function in the AIM. APSE program terminal-destined
I/O must be accomplished through the STANDARD IN and STANDARDOUT
files; an APSE program which accesses the terminal in any other way
might not be AIM-compatible. APSE programs should generate only the
standard printable ASCII characters. If an APSE program generates
characters outside the ASCII printable range, the AIM will remove3those characters.
In order for the AIM to obtain exclusive access to an APSE program's
terminal input and output, the user program may use oiily STANDARD IN
and STANDARD OUT for terminal I/O. There may be no other files
associated with the terminal. Terminal I/O is accomplished through
these standard files which are connected to the terminal. No logical

3

3-119

AIM INTERFACE REQUIREMENTS
GENERAL ENVIRONMENT ISSUES

name translation is provided to access a unique device.

An APSE program is by definition a program -hich uses only KAPSE
services. Therefore, a program which bypasses KAPSE services for any
reason is not an APSE program and therefore might not be AIM
compatible.

3-120

I

I
I

CHAPTER 3

3 ADA LANGUAGE SYSTEM INTERFACES

3 3.1 GENERAL

The Ada Language System (ALS) has been recently released by SofTech,
Inc. under U.S. Army contract number DAAK80-80-C-0507. This
analysis was performed using detailed design documentation made
available prior to the release of the ALS (SOF83 1. This section
evaluates the ALS against the requirements of the AIM.

I 3.2 TERMINAL CCMMUNICATION

The terminal communications facilities of the ALS are sorely
deficient for purposes of the AIM. None of the AIM required
capabilities exist in the ALS. Below, the interfaces are listed with
explanations of ALS insufficiencies.

I Insufficient Interfaces

1. Echo Control

2. Non-filtered keyboard read

3 3. Non-filtered display write

4. Screen-oriented facilities

5. Exclusive access

6. Terminal identification

I
I

I
| 3-121

ADA LANGUAGE SYSTEM INTERFACES
TERMINAL COMMUNICATION

3.2.1 Echo Control

The ALS defines only two packages to supplement Ada file I/O:
packages BASIC I0 and AUX 10; there is no TERMINAL 10 package.
Neither of the defined packages support echo enable/disable.

3.2.2 Non-Filtered Keyboard Read

According to ARPANET response from SofTech, the ALS KAPSE does not
perform any I/0 buffering. However, the underlying host (VMS)
buffers keyboard input except for special control character sequences
which cause interruption (such as <CNTL>-Y). The ALS provides no
mechanism for bypassing this VMS buffering. (See Appendix B question
3.)

The VMS terminal driver waits for a carriage return to transmit
characters. The AIM can circumvent buffering of character I/O by
using the VAX QTO macros (DEC82]. This is a significant interface
issue because it requires bypassing the ALS KAPSE. Consequently, the
portability of the AIM is reduced.

3.2.3 Non-Filtered Display Write

There are two mechanisms for doing writes: BASIC_ I and TEXT 10.

The ALS KAPSE does no character translations of its own. Package
BASIC I0 provides byte string read and write from the KAPSE to the
VMS terminal driver. Again, however, the ALS does not allow the user
to control the VMS device driver through the KAPSE. (See Appendix B,
question 1.)

The VMS terminal driver has the potential to perform character string
translations. For example, if a terminal uses an 8-bit ASCII
character code and the TT$M EIGHTBIT mode is not set, the device
driver assumes a seven-bit code, masking out the elghth bit (dropping
a bit from the received byte). Clearly, this behavior could alter an
AiM transmission. VMS also allows syntax validation of escape
sequences if TT$M ESCAPE mode is set, which forces certain
interpretations of AIM control sequences. The ALS KAPSE provides no
services for setting these VMYS terminal characteristic modes; the
',ser must perform an ESCAPE to the underlying VMS operating system.

To write strings exactly as represented, the ALS KAPSE may be
bypassed to access the VMS device driver and set the terminal
characteristic TTSMPASSALL. This mode ensu;res that all input and
output is binary and that no interpretation whatsoever occurs in the
device driver. Again, AIM transportability is significantly reduced
by the VMS dependent se-vices required. ({DEC32] p 9-19)

3-122

1
ADA LANGUAGE SYSTEM INTERFACES

TERMINAL COMMUNICATION

13.2.4 Screen-Oriented Facilities

As described above, the ALS defines only two auxiliary I/O packages
to supplement Ada I/O. Neither of these packages mentions any screen
manipulation procedures, and ARPANET communications confirmed that
explicit x-y cursor positioning is not supported by the ALS.5 (Appendix B, question 2.)

3.2.5 Exclusive Access

IThe ALS documents were rot clear on the subject of user terminal
access. Verbal response from SofTech CRT83] indicated that exclusive3 access to the user terminal is not provided by the ALS.

The ALS defers to VMS which allows concurrent read and write access
to multiple internal files which are associated with the terminal.
The KAPSE provides no mechanism for obtaining exclusive access to the
APSE program's terminal I/O (Appendix B, question 4). VMS, however,
provides a device allocation service ($ALLOC) which reserves the
device for the exclusive use of the requesting process and its
subprocesses. Again, this requires bypassing the ALS KAPSE.

3.2.6 Terminal Identification

3The ALS documents do not describe a method for obtaining terminal
identification, and verbal communication confirmed that this AIM
requirement is not supported. CRT83]

3.3 PROCESS CONTROL AND COMMUNICATION

Sufficient Interfaces

1. Process initiation

3 2. Process termination

3. Process suspension/resumption

4. Process status qi.!ry

Z. SubProcess query

3insufficient Interfaces
1. Transparent interprocess communication

IThe AIM program control requirements are supported by the ALS as
follows:

I
1

3-12 3I

ADA LANGUAGE SYSTEM INTERFACES
PROCESS CONTROL AND COMMUNICATION

3.3.1 Process Initiation

Procedure CALL WAIT is prov.idcd in package PPOG CALL to ir '-ke i
program and wait until the program completes its execution.
Procedure CALL NO WAIT invokes a new APSE program allowing the caller
to continue execution without waiting for the invoked program to
complete: ([SOF83] p 90-154) g
procedure CALL WAIT

(PROGRAM NAME : in KAPSE DEFS.SHORT ID STRING;
PROGRAM-FILE : in KAPSE-DEFS.NODE NAME;
PARAMETER LIST : in PROG DEFS.PARM LIST REC;
STDIN FILE : in KAPSE DEFS.NODE NAME;
STDOUT FILE : in KAPSE-DEFS.NODE NAME;
MSGOUT FILE : in KAPSE DEFS.NODE NAME;
PROGRAMSTATUS : in out PROCGDEFS.CALLSTATUSREC);

procedure CALL NO WAIT
(PROGRAM NAME in KAPSE DEFS.SHORT ID STRING;
PROGRAM FILE : in KAPSE DEFS.NODE NAME;
PARAMETER LIST : in PROG DEFS.PARM LIST REC;
STDIN FILE in KAPSE DEFS.NODE NAME;
STDOUT FILE in KAPSE-DEFS.NODE-NAME;
MSGOUT FILE in KAPSEDEFS.NODE NAME;

PROGRAMJSTATUS : in out PROGDEFS.CALL STATUSREC);

3.3.2 Process Termination

A process and all of its subordinate processes may be terminated by I
use of the procedure REQABORTION ([SOF832 p T0-177) in the package
PRCCONTROL.

procedure REQABORTION I
(PROG NAME :n STRING UTIL.VAR STRING REC;
REQUESTSTATUS out PROG_DEFS.PROCALSTATUS_ENU);

3.3.3 Process Suspension/Resumption

A process and all of its subordinate processes may be
suspended/resumed by use of the procedures REQ SUSPENSION
([SOF83] p 90-172) and REQRESUMPTION ([SOF83] p 90-178T in the
package PROGCONTROL:

procedure REQ SUSPENSION
(PROG NAME : in STRING UTIL.VAR STRING REC;
REQUESTSTATUS : out PROG DEFS.PROCALSTATUSEN U);

I
3--124

I I I I I , I I I

I
ADA LANGUAGE SYSTEM INTERFACES

PROCESS CONTROL AND COMMUNICATION

3 procedure REQRESUMPTION
(PROG NAME : in STRING UTIL.VARSTRING REC;
REQUEST STATUS : out PROGDEFS.PROCALSTATUSENU);

3 3.3.4 Process Status Query

The status of a process can be determined by use of the procedure
REQ_STATUS (CSOF83] p 90-173) in the package PROGCONTROL.

procedure REQ_STATUS
(PROG NAME : in STRING UTIL.VAR STRING REC;
PROGRAM STATUS : out PROGRAM_ INFOREC);

33.3.5 SubProcess Query

Procedure REQ STATUS (above) also provides the capability to query
the call tree ([SOF83] p 90-173). The PROGRAM INFO REC contains
descendant and sibling fields which indicate Ehe presence of
subprocesses, by listing subprocess names.

3 The user may repeatedly call REQSTATUS to retrieve names one by one,
in effect traversing the call-tree for information.

This approach to information retrieval has some interesting
implications. The call-tree is a dynamic structure. It is not clear
if the REQSTATUS procedure takes a "snapshot" of the call-tree at a
given instant, or (more likely) the call-tree continues changing as
the status of various programs also change. A user that repeatedly
calls REQ STATUS to traverse the call-tree has no way of assuring
that the information retrieved in one instant will be valid the next
instant. For example, if the user wishes to count the total number
of subordinate programs of a running program "A", a call to
REQSTATUS would indicate one child program, "B", directly under "A":

3 Program A <== parent

Program B <== child

Program C Program D <== grandchild

3
I
I

3"125I

ADA LANGUAGE SYSTEM INTERFACES
PROCESS CONTROL AND COMMUNICATION

The user would then call REQSTATUS again to determine if program "B"
has any subordinate programs. While the user is querying program
"B", program "A" could start another program, "E":

Program A <== parent

Program B Program E <== child

Program C Program D <== grandchild

The user will never know about program "E" unless he or she performs
another REQ STATUS on program "A". Therefore, the program count will
probably be invalid.

Fortunately, the AIM requires call-tree information to determine
simply whether or not a program has subordinate programs, so repeated
calls to REQSTATUS and the possible problems described above are not
anticipated.

3.3.6 Transparent Interprocess Communication

There are no provisions in the ALS for intercepting an APSE program's
terminal 1/O. However, the ALS provides program communication in the
form of package PROG CCM. Package KAPSE COM within package PROGCOM
contains routines to create and utilize Tnterprocess channels:

1. Establish a logical connection between the calling program and
another program ([SOF83] p 90-208).

procedure CONNECT
(CHANNEL out COM DEFS.CCM CHANNEL PRV;
PATH NAME : in STRING UTIL.VAR STRING REC;
PORT-NAME : in KAPSE DEFS.SHORT ID STR;
OPTIONS : in COM DEFS.COM OPTIONS REC;
STATUS out COM-DEFS.CCM STATUS EN U;
STATUSSTRING in out STRING UTIL.VAR S-TNGREC);

3-126

ADA LANGUAGE SYSTEM INTERFACES
PROCESS CONTROL AND COMMUNICATICN

2. Accept a request to establish a communications channel

([SOF83] p 90-210).

procedure ACCEPTCONNECTION
(CHANNEL out COM DEFS.COM CHANNEL PRV;
PATH NAME : in STRING UTIL.VAR STRING REC;

PORT NAME : in KAPSE DEFS.SHORT ID STR;
OPTIONS : in COM DEFS.CCM OPTIONS REC;
STATUS out COM-DEFS.CCM-STATUS ENU;
STATUS STRING in out STRING UT.IL.VARSTRING REC);

3. Send a var string across the specified channel
((SOF83] p 90-21f).

procedure SEND
(CHANNEL out COM DEFS.COM CHANNEL PRV;
BUFFER : in STRINGUTIL.VARSTRINGREC;
PORT NAME : in KAPSE DEFS.SHORT ID STR;
OPTIONS : in COM DEFS.COM OPTIONS REC;
STATUS . out COM-DEFS.COM STATUS ENU;
STATUSSTRING in out STRINGUTIL.VARSTRING REC);

Unfortunately, the routines outlined above require that both the
a1i19 and called processes must have provisions for interprocess

communication. The called routine must accept data from the calling
program, which is not acceptable for the AIM requirement of
transparent communication.

To support this requirement, the AIM may have to bypass the ALS KAPSE
to access underlying VMS mailboxes. The VAX Create MailboX 3nd
Assign Channel ($CREMBX) system allows processes to create channels
for terminal 1/0, which may allow the AIM to intercept an APSE
program's I/O destined for the terminal. ([DEC82] p 8-2) Naturally,
transportability is impaired whenever the KAPSE is bypassed.

The ALS makes no provisions for this capability. There is also no
way to open an I/O file in SHARED STREAM mode, as the AlE describes.
As 4escribed above, the ALS KAPSE can be bypassed to access VMS
ma.. .boxes to accomplish this communication, which hinders
transportability.

3-127

ADA LANGUAGE SYSTEM INTERFACES
DATABASE SERVICES

3.4 DATABASE SERVICES

3.4.1 File Manipulation

The ALS KAPSE Database Services are complete and sufficient for AIM
implementation.

Sufficient Interfaces

1. Open/Close a database file

2. Read/Write to a database file

3. Create/Delete a database file

The ALS replaces and augments the file manipulation capabilities
defined in TEXT 10 [DOD83J with the package BASIC 10, which contains
procedures to control the standard ALS I/O streams. Aithough the
TEXT 10 provisions are sufficient for AIM needs, BASIC 10 enhances
I/O for the ALS interface. The AIM database inter:3ce requirements
are fulfilled as follows:

1. Open/Close a database file

The ALS provides open and close procedures in package BASIC 1O:
([SOF83] p 90-52,55)

procedure OPENFILE
(STREAM : out 10 DEFS.STREAM ID PRV;
NAME : in STRING UTIL.VAR STRING REC;
MODE : in 10 DEFS.IO MODE-ENU; -
FILE CLASS ou. 10 DEFS.FIEE CLASS ENU;
RECORlD FORMAT : out IO-DEFS.RECORZD FORMAT ENU;
RECORDLENGTH : out IO-DEFS.DATA INDEX INT;
RESULT out 10 DEFS.IO RESULT EU;
RESULTSTRING : in out STRINGUTIL.VARSTRINGREC);

procedure CLOSEFILE
(STREAM in I DEFS.STREAM IDPRIV;
RESULT . out 1ODEFS.IO RESULT ENU;
RESULTSTRING in out STRINGUTIL.VARSTRINGREC);

2. Read/write to a database file

Package BASIC 10 in the ALS supports procedure READFILE which
reads data from an open input file. Similarly, procedure
WRITE FILE writes data to an open output file:
([SOF931 p 90-57,59)

3-128

1
ADA LANGUAGE SYSTEM INTERFACES

DATABASE SERVICES

procedure READFILE
(STREAM : in IO DEFS.STREAM ID PRIV;
BUFFER : in KAPSE DEFS.ADDRESS.INT;
LENGTH : in 10 DEFS.DATA INDEX INT;
COUNT out IO-DEFS.DATA-LENGTH INT;
RESULT out IO-DEFS.IORESULT ENU;RESULT-STRING : in out STRINGUTIL.VARSTRINGREC);

procedure WRITEFILE
(STREAM : in IO DEFS.STREAM ID PRIV;
BUFFER : in KAPSE DEFS.ADDRESS.INT;
COUNT : in 10 DEFS.DATA DATA INDEXINT;
RESULT out IO-DEFS.IO RESULT-ENU;
RESULTSTRING : in out STRINGUTIL.VARSTRING_REC);

3. Create database files

3File creation is also handled in package BASIC_I/O by procedure
MAKEFILE (CSOF83] p 90-48):

procedure MAKEFILE
(STREAM out 10 DEFS.STREAM ID PRIV;
NAME : in STRING UTIL.VAR STRINGREC;
MODE : in 10 DEFS.IO MODE-ENU;
FILE CLASS : in IO-DEFS.FILE CLASS ENU;
RECORD LENGTH : in IO-DEFS.DATA-INDEX INT;

RESULT : out IO-DEFS.IO RESULT ENU;
RESULTSTRING : in out STRINGUTIL.VARSTRINGREC);

This procedure associates an I/O stream with the new file.

*4. Delete database files

Package BASIC 10 also supports file deletion by procedure3DELETEFILE: T[SOF831 p 90-51)

procedure DELETE FILE
(STREAM : in I DEFS.STREAM ID PRV;
RESULT out IO-DEFS.I0 RESULT ENU;
RESULTS"-aING : in out STRINGUTIE.VARSTRINGREC);

The database file associated with the STREAM parameter is
deleted, after all streams with which the file is associated are
closed.

II
I

ADA LANGUAGE SYSTEM INTERFACES
ENVIRONMENT SPECIFIC ISSUES

3.5 ENVIRONMENT SPECIFIC ISSUES

This section describes facilities provided in the ALS KAPSE which may
affect the operation of the AIM program. The ALS provides the user
with the capability to suspend program and terminal I/O from the
terminal with the "break-in" facility. This allows the user to
suspend the AIM itself. The user has control of the terminal and may
randomly change screen data without AIM supervision. When AIM
execution is resumed, the user may become confused because the AIM
assumes that mappings between AIM images and the actual display are
intact, when in reality they have been changed.

3.5.1 ALS "Break-in" Facility

The ALS allows a user to type <cntl>-C to receive control of any
currently running job [SOF83J. This gives the user control of the
screen and terminal-directed I/O. Since the AIM is an APSE program,
it may be suspended by the "break-in" facility, which returns control
of the user's terminal I/O to the KAPSE. If -he user changes the
information on the screen and then resumes AIM execution, the results
are unpredictable. The AIM makes certain assumptions about the
screen and mappings among images, windows, and vi-wports, and if the
user moves or deletes screen information, the display will not
correctly reflect AIM mappings. Therefore, the use of the ALS
"break-in" key is potentially hazardous to the AIM user.

If the "break-in" facility is suspendable, however, these problems
could be alleviated because the AIM would then control the break-in.
The break-in facility would even become useful for the AIM itself to
control programs and terminal I/O. Conversely, the facility is
designed as an "emergency" mechanism to provide the user absolute
control, and implementing it as a program may defeat its purpose.

Another possibility is that the KAPSE might reinstate the screen
status automatically upon program resumption. This would ensure that
the AIM screen mappings would remain valid even if the AIM is
suspended.

The AIM cannot automatically refresh the screen upon resumption
because it has no knowledge of having been suspended. The user must
choose to restore the screen display arbitrarily. The AIM itself
will provide a screen refresh function invoked by a special key
sequence CTI85A1. If the AIM is suspended for some reason
(intentional or unintentional) and the screen data is modified, this
function will reinstate the correct mappings between the internal AIM
images and the screen.

3-130

I

ADA LANGUAGE SYSTEM INTERFACES
ENVIRONMENT SPECIFIC ISSUES

* 3.5.2 Broadcast Messages

The ALS doez not provide a mechanism for granting the AIM exclusive
access to the user terminal. The absence of exclusive access enables
the host operating system to generate system "broadcast" messages
which may overwrite portions of the screen. The user must reinstate
the screen with the AIM refresh function.

3.5.3 Bypassing KAPSE Services For Terminal Control

The ALS permits the user to perform an implicit escape to the
underlying host operating system for some terminal control functions
(such as opening the terminal file). The use of this feature may
alter the appearance of the screen to incorrectly reflect AIM
mappings. A program which bypasses KAPSE services in this manner is
not a true APSE program and is considered erroneous.

33.5.4 Constraints On User Programs

Although the AIM is intended to be transparent to APSE programs, it
is possible that APSE programs may be required to follow some
guidelines in order to interface with the AIM, especially in the area
of terminal I/O. This section describes some restrictions that might
be imposed upon programs which are intended to execute under the AIM.

33.5.4.1 APSE Program I/O

If the appropriate KAPSE services are provided by the ALS, the AIM
mechanism required to intercept program 1/O will not impact APSE
program design. APSE programs should need no special I/O file
parameters to function in the AIM. APSE program terminal-destined
I/O must be accomplished through the STANDARD IN and STANDARD OUT
files; an APSE program which accesses the terminal in any other way
might not be AIM-compatible. No logical name translation is provided
to access a unique device. The ALS, however, allows the user to
bypass the KAPSE to use VMS services to perform logical name
translation.

An APSE program is by definition a program which uses only KAPSE
services. Therefore, a program which bypasses KAPSE services for any
reason is not an APSE program and therefore might not be AIM
compatible. For example, the ALS permits the following:

UOpen ("<<VMS>>TT:")

3This statement causes an implicit ALS ESCAPE to the underlying host
operating system (VMS, in this case). Host services are used to open

I
3-131

ADA LANGUAGE SYSTEM INTERFACES
ENVIRONMENT SPECIFIC ISSUES

the terminal file.

3.5.4.2 MASTERIN, MASTEROUT, And MESSAGEOUT

The ALS defines two extraneous files for I/N besides STANDARD IN and
STANDARD OUT, called MSTR IN and MSTROUT. These two extra files are
always associated with the terminal. The purpose of these files was
not clear from the documents. Verbal communications [RT83A1
indicated that MSTR IN and MSTR OUT are provided to allow batch
streams to send status messages to the terminal, such as "please
mount tape". There is no way to disassociate MSTR IN and MSTROUT
from the terminal; these messages will always be directed to the
screen. This could disrupt the user of an interactive program (such
as the AIM or a text editor) if a batch stream sends a message which
demands a response.

The AIM restricts APSE programs to use only a single pair of files
for terminal 1/0, specifically STANDARD IN and STANDARD OUT.
Th:erefore, using MSTR IN and MSTROUT by definition :reates an -APSE
program which might not run correctly under :he AIM. The ALS
additionally defines MSG OUT, a file which is always asscciated with
the terminal (presumably-intended for system messages, [RT83A]). Use
of this file will also create problems when executing under the AIM.

3-132

I
I
I
I.
I

CHAPTER 4

ADA INTEGRATED ENVIRONMENT INTERFACES

4.1 GENERAL

Intermetrics, Inc. is performing the design and implementation of* the Ada Integrated Environment (AIE) under U.S. Air Force contract
number F30602-80-C-0291. Neither the design nor the implementation
of the AIE are complete at this time.

I 4.2 TERMINAL COMMUNICATION

The terminal communication interfaces are fairly well-defined and
generally sufficient for the requirements of the AIM. Only the
keyboard read is insufficient:

Sufficient Interfaces

1. Echo control

2. Non-filtered display write

3. Screen-oriented facilities

3 4. Exclusive access

5. Terminal identification

U Insufficient Interfaces

3 i. Non-Filtered keyboard read

I
I

3-133I

ADA INTEGRATED ENVIRONMENT INTERFACES
TERMINAL COMMUNICATION

4.2.1 Echo Control

The AIE provides package INTERACTIVE IO as an extension to TEXT 10.
The following procedures are defined in this package for echo
control:

procedure SET ECHO
(INPUT : in FILE TYPE;
OUTPUT : in FILETYPE);

procedure NO ECHO
(INPUT : in FILETYPE);

procedure NO ECHO
(OUTPUT: in FILETYPE);

SET ECHO enables echo at the current line and column of input.
NO ECHO breaks echo associations for either input or output.
([TNT82] p 73)

4.2.2 Non-Filtered Keyboard Read

ARPANET response from Intermetrics indicated that I/O operations to
interactive devices are buffered to permit local line-editing before
the characters are received as part of the text input file.
(Appendix B, question 3) Buffers will be delimited by ENTER/Carriage
Return characters. Projections indicate that the SET_ INPUT INFO
procedure of package INTERACTIVE 10 will provide control of this
buffering. (lINT821 p 73)

4.2.3 Non-Filtered Display Write

This functionality is defined in the package TEXT 0 by the following
prccedure: ([DOD831 p 14-19)

procedure PUT
(FILE : in FILE TYPE;
ITEM : in STRING);

4.2.4 Screen-Oriented Facilities

Since the AlE treats the terminal display as a random text file, the
package TEXT ACCESS defines several procedures applicable to
two-dimensional display manipulation. The AIM can simulate all the
screen "editing" functions it requires wich the primitives in this
package. For example, a "clear to end of line" command can be
implemented by positioning the cursor to the appropriate line and
column, and writing blanks across the line. Included in package
TEXTACCESS are: ([INT82] p 70)

1-134

1

5ADA INTEGRATED ENVIRONMENT INTERFACES
TERMINAL COMMUNICATION

11. Procedure SETOFFSET - selects the next read/write character.

procedure SET OFFSET
(FILE : in FILE TYPE;
TO : in COUNT);

2. Procedure SET LINE - positions the cursor vertically at the
beginning of a selected line.

procedure SET LINE
(FILE : in FILE TYPE;
TO : in COUNT);

3. Procedure SET_COL - positions the cursor horizontally at a
selected column.

procedure SET COL
(FILE : in FILE TYPE;
TO : in COUNT);

34.2.5 Exclusive Access

The AIE documents presently contain minimal information about
terminal I/O. The TEXT 10 package [DOD83] defines facilities for
many 1/O needs, but does n~t define a method for connecting the
Standard In and Standard Out files to the terminal, as required by
the AIM. Therefore, it is difficult to determine whether the AIM may
be granted exclusive access to an APSE program's terminal I/O.

Although this requirement is not discussed in the documents, verbal
communication with Intermetrics indicated that there will exist a
method for obtaining exclusive access to the user terminal. [TT83]

4.2.6 Terminal identification.

IPackage TERMINAL IC is defined in the AIE for terminal interaction.
The following primitives could potentially retrieve a terminal
identification rtring: (EINT82] p 58)

procedure GETTERMINAL INFO
(TERM : in INTEGER;
INFO : out TERMINALISFOBLCCK);

:f TERMINAL INFO BLOCK (yet undefined) contairs a component such as
TERMINAL ID-STRIRG, these procedures would suffice for this interface3requi.rement. Verbal communication [TT831 confirmed this assumption.

1
1

3-1351

ADA INTEGRATED ENVIRONMENT INTERFACES
PROCESS CONTROL AND CCOMUNICATION

4.3 PROCESS CCNTROL AND COMMUNICATION

The AIE defines package PROGRAM INVOCATION to support program control

requirements: ([INT82] pp i05-6).

Sufficient Interfaces

1. Process initiation

2. Process termination

3. Process suspension/resumption

Insufficient Interfaces

1. Process status query

2. SubProcess query

3. Transparent interprc.ess communication

4.3.1 Process Initiation

Function CALL PROGRAM invokes an APSE program as a subprogram of the
caller. The calling program is suspended until completion of the
subprogram. Procedure INITIATE PROGRAM invokes an APSE program in a
manner similar to CALL PROGRAM, but the calling program is not
suspended:

function CALL PROGRAM
(PRCGRAM PATH : in STRING;
PARAMETERS : in PARAIMS STRING;
CONTEXT NAME : in STRING := ".SF'E CONTEXT":
STD IN : in TEXT :O FILE TYP:E CURRENT INPUT;
STD-OUT : in TEXT- O.FILE-TYPE := CURRENT-OUT*UT)
return RESULTSSTRING;

procedure INITIATE PRCGRAM
(PROGRAM PATH : in STRING;
PARAMETfRS : in PARAMS STRING;
CONTEXT NAME : in STRING ;
STD IN : in TEXT 10.FILE TYPE;
97D OUT : in TEXT IO.FILE-TYPE);

3-136

I

I

ADA INTEGRATED ENVIRONMENT INTERFACES

PROCESS CONTROL AND COM4UNICATICN

U 4.3.2 Process Termination

Procedure EXIT PROGRAM stops program execution. A boolean parameter
indicates whether to wait for subprocesses to complete, or to abort
all subprocesses.

procedure EXIT_PROGR
(RESULTS : in RESULTS STRING;
ABORTSUBCONTEXTS : in BOOLEAN := FALSE);

4.3.3 Process Suspension/Resumption

Procedure SUSPENDPROGRAM allows execution to be temporarily stopped.

procedure SUSPEND_PROGRAM
(CONTEXTNAML : in STRING);

Procedure RESUMEPROGRAM restarts a suspended program.

procedure RESUME PROGRAM
(CONTEXTNAME T in STRING);

4.3.4 Process Status Query

There is no explicit provision in [INT821 for querying the status of
a program. Packager PROGRAM INVOCATION contains procedure
SUSPENDPROGRAM, which stops the execution of the named program,
allowing the state of the execution to be examined (lINT82I p 106).

This procedure ras no OUT parameters, so it is not clear how the
status query is accomplished. It is also not clear if the state of
execution is the current status, or the state of the program before
suspension. Since it would be useless to query the status of a
process that is known to be suspended, one would assume that the
execution state consists of program information (such as register
contents). Under this assumption, program status information is not

* available to the user.

4.3.5 SubProcess Query

Call-tree information services could not be found in the AIE
documents. The ability to access call-tree information is implied by
procedures such as EX.T_PROGRAM, which can wait for sub-contexts to
complete. However, a procedure which explicitly allows the user to
query the call-tree is not provided. (lNT82] p 106)

II
I

3-137

I

ADA INTEGRATED ENVIRONMENT INTERFACES
PROCESS CONTROL AND COMMUNICATION

4.3.6 Transparent Interprocess Communication

The AIM desires channels for pipe I/O that are transparent to an APSE
program. According to ARPANET response from Intermetrics, pipe I/O
can be accomplished through package TEXT -0, opening the file in
SHARED STREAM mode. The OPEN procedure allows a FORM string
parameter which can be specified as SHARED STREAM through a
label=>value list: ([INT82] p 72) ([DOD83] 14.3.10) (Appendix B,
question 4)

OPEN (FILENAME, INFILE, "RESERVEMODE => SHAREDSTREAM");

SHARED STREAM mode allows synchronization of databaze object access
so that WRITE ORIGINAL access is "reserved" (granted) only at the
time of the READ or WRITE. ([INT821 p 94)

This approach to pipe I/O may not be acceotable for the AIM. The AIM
requires that APSE programs use only the :TD IN and STDOUT files for
terminal I/O. These files are i7- - opened upon program
invocation, so normally the APSE program. never cal-s the OPEN
procedure. The AIE mechanism requires that -:e APSE user program
explicitly open STDIN and STD OUT in SHAREDSTREAM mode. This
implies that the AIM pipe mechanism would not be transparent to user
programs.

A more attractive alternative is for the AIM itself to open the file
in SHARED STREAM mode, and then pass the file to the APSE program as
part of the INITIATE PROGRAM call. The AIM pipe mechanism would then
be transparent to The APSE program. Verbal communications indicate
that this is a viable solution. [TT83A]

AIM interprocess communication consists of intercepting input and
output from the APSE program executing in the environment. The AIM
may oe able to accomplish this with the provision for opening a file
in SHAREDSTREAM mode (see item I above).

It is not clear that the AIM will need further interprogram
communications facilities, but for the sake of completeness, the
existing AIE IPC interfaces are analyzed below.

The package INTER PROGRAM COMMUNICATION defines several functions and
procedures for manipulating and controlling program I/O channels.
The communicating programs must agree on the format and
interpretation of PARAMS STRING and RESULTSSTRING for interprogram
communication. ([INT82] p-110)

1. Accept next waiting en-ry call:

3-138

I

ADA INTEGRATED ENVIRONMENT INTERFACES
PROCESS CONTROL AND COMMUIICATION

I function IPCACCEPT
(CHANNEL NAME : in STRING;
TIME LIMIT : in DURATION := DURATION'LAST)3 return PARAIAS_STRING;

2. Resume IPCENTRYCALL after an TPCACCEPT:

procedure IPC END RENDEZVOUS
(CHANNEL NAME :-in STRING;
RESULTS : in RESULTS STRING);

3. Send data through channel:

function IPC ENTRY CALL
(CONTEXT NAME : in STRING;
CHANNEL-NAME in STRING;
TIME LIMIT : in DURATION := DURATION'LAST;
PARAMS : in PARAMS STRING)
return RESULTS_STRING;

4. Select channel for IPC:

procedure IPC_SELECT is named but not yet defined in this
package.

3 Facilities to create channels are not provided in this package;
however, Intermetrics has indicated verbally that channel
creation will be provided. [TT831U

4.4 DATABASE SERVICES

4.4.1 File Manipulation

The KAPSE Database Services interfaces are sufficiently defined forU the AIM implementation in the package TEXTIO: ([DOD83] 14.3.10)

1. Open/Close a database file

Package TEXT 10 contains Open and Close procedures:
([DCD83] p 14-2,3)

3
I
I
I

3-139I

ADA INTEGRATED ENVIRONMENT INTERFACES
DATABASE SERVICES

procedure OPEN
(FILE : in out FILE TYPE;
MODE : in FILEMODE := OUT FILE;
NAME : in STRING;
FORM : in STRING);

procedure CLOSE

(FILE : in out FILETYPE);

2. Read/write data to a database file

The TEXT_10 package defined in CDOD83] contains PUT and GET
procedures for file I/O which support variable length strings:
([DOD33] p 14-19) String I/O is accomplished by calls to PUT and
GET single characters for the length of the string.

procedure PUT
(FILE : in FILE TYPE;
ITEM : in STRING);

procedure GET
(FILE : in FILE TYPE;
ITEM : out STRING);

3. Create database files

Procedure CREATE in TEXT 10 allows the AIM to create database
file objects. ([DOD83] p 14-3)

procedure CREATE
(FILE : in out FILE TYPE;
MODE : in FILE-MODE := DEFAULT_MODE;
NAME : in STRING
FORM : in STRING :

4. Delete database files

Procedure DELETE in package TEXT IO is sufficient for file
deletion. ([D0D83] p 14-4)

procedure DELETE
(FILE : in out FILE TYPE);

3-140

I

i ADA INTEGRATED ENVIRONMENT INTERFACES
ENVIRONMENT SPECIFIC ISSUES

1 4.5 ENVIRONMENT SPECIFIC ISSUES

This section describes features provided in the AIE KAPSE which
already have, or possibly'may, (adversely) affect the operation of
the AIM program.

1 4.5.1 Bypassing KAPSE Services For Program Control

The AIE provides the user with the capability to suspend program and
terminal I/O from the terminal with "scroll mode control". This
allows the user to suspend the AIM itself. The user has control of
the terminal and may randomly change screen data without AIM
supervision. When AIM execution is resumed, the user may become
confused because the AIM assumes that mappings between AIM images and
the actual display are intact, when in reality they have been
changed.

The AIE extends the ALS "break-in" facility to include terminal I/O
functions ([INT821 p 114). The user types a <CNTL>-S to stop
terminal output and enter scroll control mode. This mode is intended
to provide a "cache" of output which the user may have lost from

* scrolling or printer malfunction. Once in scroll control mode, the
user has control of terminal I/O and may scroll the screen or perform
simple editing functions through a "terminal handler". The user may
also interrupt -program execution. All terminal input and output is
stored in temporary files for historical purposes.

If a user invokes scroll control mode while under the AIM, thei consequences are rather unpredictable. It is not clear if all
running programs are automatically suspended, or if execution
continues. Either result could adversely affect the function of theAIM.

4.5.2 Broadcast Messages

Intermetrics has indicated that the AIE will enable the AIM to obtain
exclusive access of the user terminal 1/O. The ALS and ADE do not
provide a mechanism for granting the AIM exclusive acces' to the use-
terminal. The absence of exclusive access enables the host operating
system to generate system "broadcast" messages which may overwriteportions of the screen. The AIM should allow system messages to be
generated, but these messages may disturb the progress of an APSE
programming session. The user's recourse is to re.nstate the screen
with the AIM refresh function described above.

Ii
I

3-141I

3-142

I
I
I

I CHAPTER 5

PROPOSED MIL-STD-CAIS

1 5.1 GENERAL

This interface report evaluates the specifications defined in the
Proposed Military Standard Common APSE Interface Set (CAIS) "Proposed
MIL-STD-CAIS" [KIT851 as developed by the KIT/KITIA CAIS Working
Group. This section examines the CAIS interfaces with respect to the
AIM requirements. identifying those which are insufficient or3 missing.

5.2 BACKGROUND

The Common APSE Interface Set (CAIS) [KIT85], is a result of an
effort by "technical representatives from the two DoD APSE
contractors, representatives from the DoD's Kernel Ada Programming
Support Environment(KAPSE) Interface Team(KIT), and ,olunteer
representatives from the KAPSE Interface Team from rndus.ry and
Academia(KITIA)" [KIT851. The CAIS defines a set of interfaces .-at
are designed to promote the source-level portability of Ada programs.
The scope of the interfaces provided by the CAIS are "those services,
traditionally provided by an operating system, that affect tool
transportability." [KIT851 The CAIS addresses the areas of:

I1. ame space management,

2. Process management,

I 3. File input/output,

4. Interactive terminal control, and

1 5. Magnetic tape control.

The AIM requires facilities in all of these areas except for magnetic
tape control.

3
3-14 3

PROPOSED MIL-STD-CAIS
TERMINAL COMMUNICATION

5.3 TERMINAL COMMUNICATION

Sufficient Interfaces

1. Echo control

2. Non-filtered keyboard read

3. Non-filtered display write

4. Screen-oriented facilities

5. Exclusive access

6. Terminal Identification

The CAIS defines packages that provide input/output services that are
specific to terminal communications. These services are sufficient
to supply the needs of the AIM. The requirements of the AIv with
respect to interactive terminal services are enumerated in the
following sections with an indication of the CAIS interfaces that
support the desired functionality.

The preceding enumeration of terminal communication interfaces
assumed that abstractions of terminals were not provided in the
environment (as they were not provided in the AIE, ALS, or CAIS at
the beginning of the AIM project). However, the CAIS provides
abstractions for three types of terminals (Scroll, Page, and Form)
that are almost identical to the terminal abstractions defined in the
AIM. The abstractions provided by the CAIS in many cases remove the
need for some of the previously enumerated interfaces. In
particular, the Form terminal of the AIM can be implemented using the
Form terminal of the CAIS, removing the need for the previously
enumerated interfaces for the implementation of the Form terminal.Therefore, the Form terminal interfaces require no discussion and are
excluded from this section.

5.3.1 Echo Control

The procedure SET ECHO ([KIT85] pp 137,152) in the packages
SCROLL TERMINAL and PAGE TERMINAL provide the capability to
enable7disable echoing of characters for a specific terminal. The S
function ECHO ([KIT85] pp 138,153) in the packages SCROLL TERMINAL
and PAGE TERMINAL provide the capability to determine whether the
echoing of characters is enabled. The specifications for SET ECHO
and ECHO in both SCROLLTERMINAL and PAGE TERMINAL are syntactically
identical.

3-144

I
PROPOSED MIL-STD-CAIS

TERMINAL COMMUNICATCN

I procedure SET ECHO
(TERMINAL :-in out FILE TYPE;
TO : in BOOLEAN := TRUE);

function ECHO
(TERMINAL : in out FILETYPE)3 return BOOLEAN;

5.3.2 Non-Filtered Keyboard Read

The GET procedures ([KIT85] pp 139-141,154-156) in the packages
SCROLL TERMINAL and PAGE TERMINAL provide the capability of obtaining
either-(l) a single character or function key or (2) all available
characters or functions keys. The GET procedures in SCROLL-TERMINAL
and PAGETERMINAL are syntactically identical.

procedure GET -- a single character or function key
(TERMINAL in out FILE TYPE;
ITEM out CHARACTER;
KEYS : out FUNCTION KEYDESCRIPTOR);

procedure GET -- all available characters or function keys
(TERMINAL in out FILE TYPE;
ITEM out STRING;
LAST out NATURAL;
KEYS out FUNCTIONKEYDESCRIPTOR);

Although the GET procedures do nct guarantee that the data received
is non-filtered, the function IW'ERCEPTED CHARACTERS ([KIT853 pp 125)
in the package 10 CONTROL permits "the- user to determine which
characters will be filtered out. Use of the INTERCEPTEDCHARACTERSwould permit the AIM to adjust itself to different environments.

function INTERCEPTED CHARACTERS
(TERMINAL : in out FILE TYPE)
return CHARACTERARRAY;

5.3.3 Non-Filtered Display Write

The overloaded PUT procedures in the packages SCROLL TERMINAL and
PAGE TERMINAL ([KIT85] pp 136-137,151-152) provide the capability for
writIng single characters and variable length strings to a terminal.
The specifications for the PUT procedures are syntactically identical
in both the SCROLL-TERMINAL and PAGE-TERMINAL packages.

procedure PUT
(TERMINAL : in out FILE TYPE;
ITEM : in CHA.RCTER);

II
3-145

I

PROPOSED MIL-STD-CAIS
TERMINAL COMMUNICATION

procedure PUT
(TERMINAL : in out FILE TYPE;
ITEM : in STRING);

5.3.4 Screen-Oriented Facilities.

The packages SCROLL TERMINAL, PAGE TERMINAL, and FORM TERMINAL
provide screen-orienied capabilities. The capabilities provided by
these packages are sufficient to replace the virtual terminal portion
of the AIM design.

The facilities provided inclute the operations provided by most
currently manufactured character-imaging interactive terminals as
well as the ability to query the size of the terminal display and
query the position of the cursor. The minimal set of interfaces that
would enable the AIM to be implemented on the CAIS are:

type CURSORPOSITION is
record

LINE : POSITIVE;
COLUMN : POSITIVE;

end record;

function SIZE
(TERMINAL : in FILE TYPE)
return CURSORPOSITION;

function CURSOR
(TERMINAL : in FILE TYPE)
return CURSORPOSITION;

procedure SET CURSOR
(TERMINAL :-in out FILE TYPE;
POSITION : in CURSORPOSITION);

5.3.5 Exclusive Access

The OPEN procedures in the package NODE MANAGEMENT ([KIT85] pp 38-39)
in combination with the OPEN procedures in the package CAIS.TEXT 10
([KIT8S5] pp 115-116) provide the capability of obtaining exclus7ve
access to a terminal. The procedure CHANGE INTENTION
(CKIT85] pp 40-41) in the package NODEMANAGEMENT provTdes the
capability to obtain exclusive access to a node (file) that has
already been opened.

3-146

l

PROPOSED MIL-STD-CAIS
TERMINAL COMMUNICATION

procedure OPEN -- in package NODEMANAGEMENT
(NODE : in out NODE TYPE;
NAME : in NAME STRING;
INTENT : in INTENTION (1 => READ);
TIMELIMIT : in DURATION NO DELAY);

procedure OPEN -- in package NODEMANAGEMENT
(NODE : in out NODE-TYPE;
BASE : in NODE TYPE;
KEY : in RELATIONSHIP KEY;
RELATION : in RELATION NAME := DEFAULT RELATION;
INTENT : in INTENTION (1 => READ);TIMELIMIT : in DURATION NO DELAY);

procedure OPEN -- in package CAIS.TEXTIO
(FILE : in out FILE TYPE;
NODE : in NODE TYPE;3 MODE : in FILEMODE);

procedure OPEN -- in package CAIS.TEXTIO
(FILE : in out FILE TYPE;
NAME : in NAME STRING;
MODE : in FILEMODE);

procedure CHANGE INTENTION
(NODE : in out NODE TYPE;
INTENT : in INTENTION;
TIME -LIMIT : in DURATION := NO-DELAY);_ in _

5.3.6 Terminal Identification

The CAIS provides facilities for the identification of a terminal's
capabilities via the attributes of a node. The predefined attribute
TERMINAL KIND may be read to determine whethcr a terminal is a
SCROLL, PAGE, or FORM terminal KIT851 p 102). The procedure
GET NODE ATTRIBUTE ([KIT85I pp 69) the package ATTRIBUTES provides
the capability to read the TERMINALKIND attribute.

In addition, it would be possible tc define a user attribute that
identifies the protocol of the terminal. The procedure
SET NODE P rRIBUTE ([KIT851 pp 66-67) in the package ATTRIBUTES
provide the capability to set the value of a node attribute.

procedure GETNODE ATTRIBUTE
(NODE : in NODE TYPE;
ATTRIBUTE : in ATTRIBUTE NAME;
VALUE : in out LISTTYPET;

3-147

PROPOSED MIL-STD-CAIS
TERMINAL COMMUNICATION

procedure SET NODE ATTRIBUTE
(NODE in NODE TYPE;
ATTRIBUTE in ATTRIBUTE NAME;
VALUE in LISTTYPET;

5.4 PROCESS CONTROL AND COMMUNICATION

Sufficient Interfaces

1. Process initiation

2. Process termination

3. Process suspension/resumption

4. Process status query

5. SubProcess query

6. Transparent interprocess communication

The package PROCESSCONTROL provides the capabilities of process
creation, t,:rination, query, suspension, and resumption. The
procedures which satisfy the AIM APSE program interfaces are as
follows:

5.4.1 Process Tnitiation

The procedure SPAWN PROCESS ([FIT85] pp 83-84) in the package
PROCESSCONTROL creates an APSE process as a "child" of the currently
executing process. The procedure INVOKE PROCESS ([KIT85] pp 85-87)
in the same package also creates an APSE process as a "child" cf the
currently executing process, but suspends the task making the call
until the process completes execution.

procedure SPAWNPRCCESS
(NODE : in out NODE TYPE;
FILE NODE : in NODE TYPE;
INPUTPARAMETERS : in PARAMS STRING;
KEY : in RELATIONSHIP KEY := LATEST KEY;
RELATION : in RELATION NAME := DEFAULT RELATION;
ACCESS CONTROL : in LIST TYPE EMPTY LIST;-
LEVEL : in LIST TYPE EMPTYLIST;
ATTRIBUTES : in LIST-TYPE EMPTY LIST;
INPUT FILE : in NAMESTRING := CURRENT INPUT;
OUTPUT FILE : in NAME-STRING CURRENT-OUTPUT;
ERROR FILE : in NAME-STRING CURRENT-ERROR;
ENVIRONMENT NODE : in NAME-STRING CURRENT NODE);

3-148

I

PROPOSED MIL-STD-CAIS
PROCESS CONTROL AND COMMUNICATION

I procedure INVOKEPROCESS
(NODE in out NODE TYPE;
FILE NODE in NODE-TYPE;
RESULTSRETURNED in out RESULTS-LIST;
STATUS out PROCESS STATUS;
INPUTPARAMETERS in PARAMS STRING;
KEY in RELATIONSHIP KEY := LATEST KEY;
RELATION in RELATION NAME := DEFAULT RELATION;
ACCESSCONTROL in LIST TYPE EMPTY LIST;
LEVEL ' in LIST TYPE EMPTY LIST;
ATTRIBUTES in LIST TYPE EMPTY LIST;
INPUT FILE in NAME-STRING CURRENT INPUT;
OUTPUT FILE in NAME-STRING CURRENT-OUTPUT;

ERROR FILE in NAME-STRING CURRENT ERROR;
ENVIRONMENT NODE in NAME-STRING CURRENT-NODE;
TIMELIMIT : in DURATION := DURATION'LAST);

5.4.2 Process Termination

The procedure ABORT PROCESS ([KIT85] pp 93-94) in the package
PROCESSCONTROL provTdes the capability to abort (terminate) a
process.

procedure ABORT PROCESS
(NODE : in-NODE TYPE;
RESULTS : in RESULTSTYPE);

procedure ABORT PROCESS
(NAME : in-NAME STRING;
RESULTS : in RESULTSTYPE);

procedure ABORT PROCESS
(NODE : in NODETYPE);

procedure ABORT PROCESS
I (NAME : in-NAMESTRING);

These procedures abort the process specified by NAME or NODE as well
as all processes that are rooted at the specified process. :n
addition, the string RESULT is appended to the RESULTS attribute of
the node represented

by NODE or NAME.

1 5.4.3 Process Suspension/Resumption

The procedure SUSPEND PROCESS ([KIT85] pp 94-95) in the packace
PROCESSCONTROL provides the capability to suspend a process.

I procedure SUSPEND PROCESS
(NODE . in NODE TYPE);

3
I

3-149

I

PROPOSED MIL-STD-CAIS
PROCESS CONTROL AND COMMUNICATION

procedure SUSPEND PROCESS
(NAME : in NAME-STRING);

If the process identified by NODE (or NAME) is the parent of other
process nodes, the other processes are likewise suspended.

The procedure RESUME PROCESS ([KIT851 pp 95-96) in the same package
provides the capability to resume a process.

procedure RESUME PROCESS
(NCDE : in NODETYPE);

procedure RESUME PROCESS
(NAME : in NAMESTRING);

if the process identified by NODE (or NAME) is the parent of other

process nodes, the other processes are likewise resumed.

5.4.4 Process Status Query

The function STATUS OF PROCESS ([KIT85] p 91) in the package
PROCESSCONTROL provTde-s the capability to determine the status of a
process.

function STATUS OF PROCESS
(NODE : in NODE TYPE)
return PROCESSSTATUS;

function STATUS OF PROCESS
(PROCESS : in NAME STRING)
return PROCESSSTATUS;

These procedures would enable the AIM to determine the status of the
processes that it has initiated.

5.4.5 SubProcess Query

Call-tree information can be obtained by traversal of the nodes
emanating from any process. These Facilities are made available by
the procedures and functions in the package NODE MANAGEMENT. The
procedure ITERATE ([KIT85] pp 58-59) creates an iterator th;at can be
used with the procedure MORE ([KIT89] p 59) to determine if there are
any more relationships emanating from the specified process, with
GET NEXT ([KIT85] pp 59-60) to obtain the next node in the list of
nodes emanating from the specified process.

3-150

S
PROPOSED MIL-STD-CA7S

PROCESS CONTROL AND COMMUNICATION

3 procedure ITERATE
(ITERATOR out NODE ITERATOR;
NODE : in NODETYPE;
KIND : in NODE KIND;
KEY : in RELATIONSHIP KEY PATTERN
RELATION : in RELATIONNAME PATTERN := DEFAULT RELATION;
PRIMARYONLY : in BOOLEAN := TRUE);

function MORE
(ITERATOR : in NODEITERATOR)3 return BOOLEAN;

procedure GETNEXT
(ITERATOR : in out NODE ITERATOR;
NEXT NODE : in out NODE TYPE;
INTENT : in NTE.RTION := (1=>EXISTENCE);
TIME LIMIT : in DURATION := NO _0 AV);

1 5.4.6 Transparent Interprocess Communication

A facility for transparent interprocess communication is provided in
the CAIS by queue nodes. The procedure CREATE (EKIT85] pp 113-115)
in the package CAIS.TEXT_ IO provides the ability to create a solo
queue that may be used for interprocess communication. A solo queue
may be "passed"f to an initiated process as its standard input orstandard output file such that the initiated process is not aware
that the referenced node is a queue.

prccedure CREATE
(FILE : in out FILE TYPE;
NAME : in STRING;
MODE : in FILE MODE INOUT FILE;
FORM : in LIST TYPE EMPTY LIST;
ATTRIBUTES : in LIST-TYPE EMPTY-LIST;
ACCESS CONTROL : in LIST TYPE EMPTY LIST;
LEVEL : in LIST-TYPE EMPTYLIST);

A solo queue node when opened as the standard input or standard
output file is indistiguishable from that of a text file.

I5.3 DATABASE SERVICES

5.5.1 File Manipulation

IThe name space of the CAIS is a multi-way tree of primary pathnames
threaded by secondary pathnames. Each node in the trce may be any of
the following: a file node, a structural node, or a process node.
Each type of node has different "contents", but the operations on all
types of nodes are similar. Nodes may be created and deleted and may

I 3-151

I

1
PROPOSED MIL-STD-CAIS
DATABASE SERVICES

contain files (as the content of a particular node). The following
procedures fulfill the database service requirements of the AIM:

1. Open/Close a database file.

The procedures OPEN ([KIT85] pp 115-116) and CLOSE i
([KIT85] p 113) in the package CAIS.TEXT 1O provide the
capabilities for opening and closing a database file,
respectively.

procedure OPEN
(FILE : in out FILE TYPE;
NODE : in NODE TYPE;
MODE : in FILE-MODE);

procedure OPEN _

(FILE : in out FILETYPE;
NAME : in NAMESTRING;
MODE : in FILEMODE); i

procedure CLOSE
(FILE : in out FILETYPE);

2. Read from/Write to database files. n

The procedurez GET ([KIT85] p 118) and PUT ([KIT851 p 118) in the
package CAIS.TEXT 10 provide the capability to read and write
database files. Following are two of the procedures
representative ot all those provided:

procedure GET I
(FILE : in FILE TYPE;
ITEM : out STRING); U

procedure PUT
(FILZ : in FILE TYPE;
ITEM : in STRING);

3. Create database files.

The procedure CREATE ([KIT85] pp 113-115) in the package
CAIS.TEXT_10 provides for the creation of database files.

procedure CREATE
(FILE : in out FILE TYPE;
NAME : in STRING;
MODE : in FILE MODE := INOUT FILE;
FORM : in LIST TYPE := EMPTY LIST;
ATTRIBUTES : in LIST-TYPE := EMPTY-LIST;

i
3 -15 I

I

I

I PROPOSED MIL-STD-CAIS
DATABASE SERVICES

I ACCESS CONTROL : in LIST TYPE EMPTY LIST;
LEVEL : in LIST-TYPE EMPTY-LIST);

K 4. Delete database files.

The procedure DELETE ([KIT85] pp 116-117) in the package3 CAIS.TEXT_10 provides for the deletion of database files.

procedure DELETE
(FILE : in out FILETYPE);

5.6 ENVIRONMENT SPECIFIC ISSUES

II Implementors of the CAIS are given a great deal of freedom in the
dePLnit!,n : 2.lt t it defines. in many - ztezj
was intentionally granted, but there may be cases that were
overlooked by the designers of the CAIS. This freedom means that
there may be features of the environment which will not be
anticipated in the writing of the AIM However, until such
environments are actually implemented nothing can be said about the
"CAIS environment."

I1
I
I
I
I
I

I
I

3-154

I

I
I

CHAPTER 6

ADA DEVELOPMENT ENVIRONMENT INTERFACES

1 6.1 GENERAL

The Data General Ada Development Environment (ADE) is anL integrated
set of tools, conventions, and underlying nperating system f -',res
which collectively form a minimal Ada Programming Support
Environment. References for the ADE include the Ada Development
Environment (ADE)(AOS/VS) User's Manual [DAT84] and the Advanced
Operatinq System/Virtual Storage (AOS/VS) Programmer's Manual -
Volume 1 [DAT83A] and Volume 2 [DAT83B3. The ADE is built on top of
the Data General (DG) AOS/VS operating system and thus, provides itsusers with some of \OS/VS's more attractive features, including its:

1. hierarchical file system,

2. file security mechanism via the access control list (ACL) which
is associated with every directory and file within the system,

3. directory searchlist mechanism, and

4. powerful filename template matching capability.

I This section evaluates the ADE KAPSE interfaces with respect to the
AIM's environmental requirements. Note that this evaluation is in
actuality an evaluation of the underlying operating system's services
since a true set of (Ada) KAPSE interfaces does not exist in the ADE.

This evaluation is also much more detailed than the others. This is
due to the fact that the AIM implementation proceeded in this
environment due to the apparent support of most of the needed
functions. The evaluation was updated after the implementation was
completed and, therefore, the information is completely up to date
and reflects EXACTLY what was used to implement the AIM.

I
I

3-155

!

ADA DEVELOPMENT ENVIRONMENT INTERFACES
TERMINAL COMMeUNICATION

6.2 TERMINAL COMMUNICATION

Sufficient Interfaces

1. Echo control

2. Non-filtered keyboard read

3. Non-filtered display write

4. Screen-oriented facilities

5. Exclusive access

6. Terminal Identification

Insufficient Interfaces

* None

The AiE defines several packages which support primitive functions
required by the AIM terminal interface. These packages are:

SYS CALLS - provides a callable set of Ada interfaces to the
operating systems functions (including but not limited to I/O).
This includes such things as: process control and
communications; information services; memory management; file
control (creation, deletion, renaming, etc); etc.

FILE r0 - a package that supplies interfaces to all file

input/output operations in the AOS/VS operat zg system. This is
the generalized case, from which other I/0 pac.ages can be (and
probably were) implemented (It is presumed that this package was
itself built on top of SYSCALLS).

* FILE DEFINITICNS - the definitions required to support the
FILE-10 package.

* TTY 10 - a generalized package supporting console communications
and control (probably built on top of FILE 10).

BIT OPS - supplies operations such as left/right shifting of
words and bytes. This one is required to obtain "byte pointers"
to strings for calls to FILEIO, TTYI0, and SYSCALLS.

3-156

ADA DEVELOPMENT ENVIRONMENT INTERFACES
TERMINAL COfMUNICATICN

5 6.2.1 Echo Control

The capability to enable/dicable echoina of characters for a specific
terminal is provided for in the ADE. A procedure is called to
retrieve the characteristics of the console. A field of the
retrieved record is set to disable the automatic echo of characters.3 Then the characteristics are reset appropriately.

FILE IO.GET CHARACTERISTICS

T TERMINAL, CONSOLECHARACTERISTICS, ERRORCODE);

I CONSOLECHARACTERISTICS.ECHO := FILEIO.NOECHO;

FILE IO.SET CHARACTERISTICS
T TERMINAL, CONSOLECHARACTERISTICS, ERRORCODE);

This works similarly for turning the echo back on.

U 6.2.2 Non-Filtered Keyboard Read

Facilities exist to read a single character from the type-ahead
buffer with no filtering (but still suppucting XON/'XOFF flow
control). The procedure called to perform the read is:

FILEIO.READ(TERMINAL,
ERRORCODE,BYTES-READ,BUFFER BYTE POINTER,

FILEDEFINITIONS.BINARYIO,
1);

Where-

1. TERMINAL - the private type FILE DEFINITIONS.CHANNELNUMBER which
identifies to the operating system the device of interest.

l 2. ERRORCODE - returned from the call.

3. BYTES READ - a count of the number of bytes read in.

4. BUFFER BYTE POINTER - a pointer (address) of the starting byte
positiun to which the characters will be read into. It is
constructed by the Ada statement:

3
I
l

3-157

I

ADA DEVELOPMENT ENVIRONMENT INTERFACES
TERMINAL COMMUNICATION

BUFFER := BITOPS.LCGICALRIGHTSHIFT(BUFFER, 24);

where -

BUFFER is an integer.

We store the character into an in-eger variable then extract it
later to return it to the user. More on this later.

5. FILE DEFINITIONS.BINARY 10 - this specifies the binary I/O mode
to The operating system read operations. Again, XON/XOFF flow
control remains in effect, all other characters typed at the
console will come through to the program.

6. the "I" specifies the number of characters to read.

To support the task only blocking (that is, when a console GET is
called, the calling task is blocked but not other tasks within the
same process), the FILE_ 10 interfaces must be called by a tas (not a
block statement). To support such, an intermediate task neeao to be
created.

task TTY SERVER is
entry GO;
entry START GET;
entry GET(DATA : out STPIN C;

LAST : out NATURAL);
end TTYSERVER;

This server is called from the package level interface in the
following manner.

procedure GET(DATA : out STRING;
LAST : out NATURAL) is

be-iin

TTYqERVER.GET(D.TA, LAST);
end GET;

The rendezvous TTY SERVER.START GET causes the I/O request to get
.tarted, It does this OUTSIDE of the rendezvous after the call on
START GET and before accepting tho entry call on TTY SERVER.GET.
When TTY SERVER.GET is called the calling task Is 0iocxeu UaIL11 the
called task is ready to accept the rendezvous. This is dtp to the
nature of Ada tasking, and by definition, will not block the calling
task.

3-158

I
ADA DEVELOPMENT EVIRONMENT NERFACES

. TEM FNAL COMMY.Ni CAT: ..

5 6.2.3 Non-Filtered Display write

The procedure

I TTYIO.PUT(TERMINAL, DATA);

will put data to the console (or any channel speci fied) untranslated.

1 6.2.4 Screen-Oriented Facilities

The ADE does not provide a high level Ada cackace for sucoorti"-3screen-oriented fac~ilites. However, thelldo rov: e a SCREEN 70
package which supports simple screen-oriented facilities for Data
General terminals.

I An Ada package was imported into the A M to provide tne
termnai-independent screen oriented faciities required by the AM.
Therefore, this interface can be considered sufficient.

6.2.5 Exclusive Access

it appears from the ADE manuals that a program (the A:)Can h-ave
exclusive access to a user's terminal. The interface

procedure FILE IO.OPEN

FILE NAME in STR1NG;
CHANNEL out FD.CHANNEL NLBER;
ERROR out INTEGER;5 OPTIONS in INTEGER;

where the OPTIONS field :s specified
FILE DEFINITICNS.EXCLUSIVE OPEN and the F:LE NAME is "gCCNSCLE" can
open the terminal with exclusive access.

The AIM did not use this feature, a repaint entire screen was added
to alo'; recovery from -when tne screen was tr3s-ed4 cue to an
unexpected message appearing on the console. :n this way tne user
can still get messages (such as "system go'nc down :n n minutes" and
recover the screen to the correct state with modest effort.

6.2.6 Terminal Identification

I Through the use of TEXT 10 to a file, a means exists of determining
the name of the terminal that the usFr is communicating with. It is
the responsibility of the system manager or the uspr themselves to
actually place a meaningful string into this terminal identification
file.

3-159

I

ADA DEVELOPMENi EN V.,CN" IEN. .T ERFACES
PROCESS CONTROL AmND CO ...CATC.N

6.3 PROCESS Cr"'RUL AND CC0UN:CATIOn.

Sufficienv ' *rerfaces

* Process initiation

Process status query

SubProcess query

:nsu f"-cient interfaces

* Process termination

* Transoarent interprocess communication

* Process susuension/resumption

6.3.1 Process Initiation

An ACS/VS system service ?PRCC supports the creation of su;orccesses.
This system service can be called from Ada with a call on:

SYSTEM CPERATICN := SYSCALIS.PROC;
ACO :=-0;
ACI 0;
AC2 := INTEGER(PROCESS RECCRD'address);
SYS CALLS.SYS(SYSTEM OPERATION, ACO, ACI, AC2, SYS ERROR C ;

wnere -

* SYSTEM OPERAT" N - identifies wnich ope-ating system service call

is to be performed.

ACO through AC2 - are registers to be set aporopriately for the

system service call.

SYS ERRCR - returns any error status.

The A:IM uses the ?PRCC service call to asynchronously spawn off CLI's

and cass :PC files to them as ";rNPUT" and ""CUTPTJT".

The order of doing these operations is:

Create the inout and output 'PC files. These are real files that
exist in the callers default directory.

3-160

ADA DEVELOPMENT ENVIRONMENT rNTER'ACES
PROCESS CONTROL AND CCIfcNICAT:O;'

52. Spawn the subprccess.

3. Open the input and outpu. files (created in step I above).I
6.3.2 Process Termination

7 n Superprocess mode, the ?TEF-M call can be used to terminate any
AOSPiJS process; otherwise, ?TERIM can be used to terminate the
execution of the calling process or any of its subordinates.

This system service can be called from Ada with a call on:

SYSTEM OPERATION := SYS CALLS.TERM;
ACO PRCCESS.PID;
AC! : 0;

AC2 0;
SYSCALLS.SYS(SYSTEMOPERATION, ACC, AC, AC2, SYSERROR ;

Where the definitions are as above, except ACO contains the operating
system process id number.

l This system service has a significant bug in it. If the specified
process has son processes at the time Qf the call, then control never
returns to the calling process.

6.3.3 Process Suspension/Resumption

The AOS/VS system services ?BLKPR and ?UBLPR respectively sus-end and
resume the execution of an AQS/VS process.

This system service has a proolem though. it requires t a -the
calling process have Superprocess privilege to be able to suspend or
resume a given process. This severely limits the usefulness cf tnis
system service for the AIM.

6.3.4 Process Status Query

The ACS/VS system service ?PSTAT returns execution status informaticn
for a given AOS/VS process.

This system service can be called from Ada with a call on:

I

3-161

ADA DEVELOPMENT EYVI:RONMENT INFERFACES
?ROCESS CCJNTROL AND COMMUNICATION

SYSTEMOPERATION := SYSCALS.PSTAT;
ACO := PROCESS.PID;
AC : 0;
AC2 STATUS'address;
SYSCALLS.SYS(SYSTEMOPERATION, ACO, ACI, AC2, SVS ERROR);

The STATUS parameter, AC2, returns a record of information.

6.3.5 SubProcess Query

The ACS/%S systeL service ?PSTAT returns subordinate proces-i status
information via its ?PbSN bi- array for a given AOS/VS o-::ess.

As described above. a call on ?PSTAT will return a record of
information. There are (among other thinqs) 30 consecutIve bytes in
this record that are used to store the subprocens number for
processes subordinate to the calling process (sons). Each bit
position in these 30 bytes corresponds tc a un:cue proce:.s id number.
If the bit is set, then the process with the correspondirg bit
position number a- its process id, is a son of tne calling process.

This system service has a significan- problem. The nature of AOS/VS
is to spawn new sons from a given process to perform almost every
operation (especially when the parent process is the AOS/VS Command
Language Interpreter (CL-). Because of this, it is not possible to
guarantee after a given cail on the system sarvice, ard before the
caller acts on the rturned information, that the number of son
processes and their associated ids have nct changed.

6.3.6 Transparent Interprocess Commuaication

AOS/VS supports a limited form of Interprocess Communication via IPC
files. It is limited d-e to the fact that an IPC file passed into
the standard input and output of a spawned son has the ability to
communicate through these "pipes" with the parent. Howcver, if this
son himself spawns a son (a ngrandson" of the original calling
process) and passes the same IPC files for standard input and output
to this son, the parent does NOT have the capability to communicate
with the grandson. This is a fundamental operating system design
decision made by the AOS/VS design engineers when the operating
system was being developed.

in order to communicate transoarently with a son process, cte mus::

1. C:eate the IPC file. To perform this, a call on a system service
must be mrde.

3-162

II
ADA DEVELOPMENT ENVIRONMENT INTERFACES

PROCESS CONTROL AND COMMUNICATION

I SYSTEM OPERATION := SYSCALLS.CREATE;
ACO := INFILEPTR;
ACI 0;
AC2 := TEMP IPC PACKET'address;
SYSCALLS.SYS(SYSTEMOPERATION, ACO, ACI, AC2, SYSERROR);

Where -

* ACO - contains a byte pointer to the name of the input file

(to be created). This can be any valid filename not already
in use.

* TEMP IPC PACKET - specifies the default characteristics of

the TPC file.

2. Create the process - as described in the Process Initiation
section.

3. Open the IPC files. Do this once for each of the input and
output IPC files. The Ada call is:

FILE IO.OPEN
T FILE NAME =: IPC INFILE,

CHANNEL => TEMP TN CHANNEL,
ERROR => ERROR,
OPTIONS => (FILE DEFINITIONS.OPEN FOR OUTPUT +

FILE DEFINITIONS.FORCE OUTPUT +
FILE-DEFINITIONS.IPC N5 WAIT +
FILE-DEFINITIONS.DATASENSITIVE ,

SHARED OPEN => TRUE,3 FILE-TYPE => FILEDEFINITIONS.IPCFILE);

The call is similar for opening the output IPC file.

1 6.4 DATABASE SERVICES

I 6.4.1 File Manipulation

The KAPSE Database Services interfaces are sufficiently defined for
the AIM implementation in the packaqe TEXT_ tO: ([DCD83] 14.3.10)

1. Open/Close a database file

Package TEXT 1O contains Open and Close procedures:
([DOD83] p 14-7,3)

II
3-163

I

ADA DEVELOPMENT ENVIRONMENT INTERFACES
DATABASE SERVICES

procedure OPEN
(FILE : in out FILE-TYPE;
MODE : in FILE MODE := OUT FILE;
NAME : in STRING;
FORM : in STRING);

procedure CLOSE
(FILE : in out FILETYPE);

2. Read/write data to a database file

The TEXTTO package defined in [DOD83] contains PUT and GET
procedures for file I/O which support variable length strings:
([DOD83] p 14-19) String I/O is accomplished by calls to PUT and
GET single characters for the length of the string.

procedure PUT
(FILE : in FILE TYPE;
ITEM : in STRING);

procedure GET
(FILE : in FILE TYPE;
ITEM : out STRING);

3. Create database files

Procedure CREATE in TEXT 10 allows the AIM to create database
file objects. ([DO0D83] p 14-3)

procedure CREATE
(FILE : in out FILE TYPE;
MODE : in FILE-MODE := DEFAULTMODE;
NAME : in STRING :=
FORM : in STRING := "");

4. Delete database files

Procedure DELETE in package TEXT 10 is sufficient for file
deletion. ([DOD83] p 14-4)

procedure DELETE
(FILE : in out FILE TYPE);

3-164

I
I
I

I
APPENDIX A

3 AIM INTERFACES SUMMARY

INTERFACE COMPARISON

I TERMINAL COMMUNICATION

AIM Interface Requirements ALS AIE CAIS ADE

Echo control No Yes Yes Yes
Nonfiltered keyboard read No No Yes? Yes
Nonfiltered display write No Yes Yes? Yes
Screen-oriented facilities No Yes Yes Yes
Exclusive access No Yes No Yes5 Terminal identification No Yes Yes Yes

PROCESS CONTROL AND COMMUNICATION

AIM Interface Requirements ALS AIE CAIS ADE

Process initiation Yes Yes Yes Yes
Process termination Yes Yes Yes Yes*
Process suspension/resumption Yes Yes Yes Yes*
Process status query Yes No Yes Yes
Subprocess query Yes No? Yes Yes*
Transparent interprocess No Yes Yes Yes*
communication

Yes => Support provided
Yes* => Limited support providedINo => No support provided
? => Could not determine if support is provided

I
1 3-165

U

AIM INTERFACES SUYMARY

DATABASE SERVICES

AIM Interface Requirements ALS AIE CAIS ADE

Open/close a file Yes Yes Yes Yes
Read from/write to a file Yes Yes Yes Yes
Create/delete a file Yes Yes Yes Yes

Yes => Support provided
No => No support provided
? => Could not determine if support is provided

3-166

I
I
I
i

U APPENDIX B

3 ARPANET COMMUNICATIONS

I Confusion about document content spawned the following question and
answer exchange between Texas Instruments and the APSE contractors
Intermetrics (AIE) and SofTech (ALS). Most of this information
pertains directly to KAPSE interfaces, so it is included in
transcribed form. (Answers are dated 8 Nov 82 for AIE, 12 Nov 82 for
ALS.)

3 1. Question:
Within the KAPSE is there a facility for directly referencing an
interactive device? (ie. can character sequenccs be sent to and
received from the device without any translation?)

AIE: The initial KAPSE/Tool interfaces include no mechanism for
d'1Tect reference to an interactive device. Instead, full-screen
terminals are made to look like a text file with random access to
line and column (see below). -

ALS: In the ALS, interactive devices can be referenced in two
ways:

a. Explicitly open the "file" named "<<VMS>>TT:", where TT: is
the name that VMS assigns to the device, in this case the
terminal.

b. If you want the terminal that the user is connected to, use
the predefined and preopened "files" named .MSTRIN (keyboard)
and .MSTROUT (terminal display device).

Once open, you will be able to use basic io.read file and
basic io.write file to pass byte strings to and from the DEVICE
DRIVER. The ALS KAPSE will not do any translation of the
bytestrings. However, you will have to get by the VMS device
driver. This could be the subject of a VMS experiment. The ALS
KAPSE does not support any official way of opening a device in

3-167

ARPANET COMMUNICATIONS

"raw" mode. If you can do it by passing bytestrings to the
opened devices, then it can be done, otherwise not. I do not
know the nature of the character translation performed by the VMS
device driver.

2. Question:
Does the KAPSE support any functionality for interactive devices
other than teleprinters? Are there any multidimensional
capabilities, for example, cursor positioning?

AIE: The KAPSE supports x-y cursor positioning using the
p-rmitives of the package SIMPLE OBJECTS.TEXTACCESS (see KAPSE
B5 IR-678-I, p. 24), SETLINE, SETCOL.

ALS: Unless it can be done by passing a byte string, there is no
--plicit x-y cursor positioning supported by the ALS KAPSE. The

notion of a two dimensional display is not supported by the
KAPSE. However, the Ada TEXT_10 package should work for CRT
based terminals.

3. Question:
Are I/O operations to interactive devices buffered? Must
NEW LINE or PUTLINE be called before the text is actually sent
to the device?

AIE: It is our intention that I/O may be buffered. Probably an
end-of-line will cause flushing, but in any case, requesting
input from a file which is echoing on the output file (see B5 p.
65, package INTERACTIVE O), will cause a flush. Input is
buffered up so that local line-editing may be performed before
the characters are received as part :f the text input file. The
initial KAPSE will probably always buffer up input until an
ENTER/Carriage Return key is depressed. Eventually, using the
SET INPUT INFO call of Package INTERACTIVEIO, more control will
be available.

ALS: Keyboard input is buffered by VMS which does the line
e--Tting. In general, the KAPSE sees no keyboard input until the
line is sent by use of the return key. The exceptions to this
are some of the special control operations like control-C and
control-Y used for interruption; but these are very
special-purpose operations. For most of the standard DEC
terminals, the CPU sees each keystroke. I believe that the
device driver performs the bufferina, not the hardware. The ALS
KAPSE does no input buffering itself.

For output, buffering is performed when using Ada TEXT_10. A
new line or put line is necessary to obtain the transmission of
the characters buffered. Characters are also transmitted when

3-168

i

ARPANET COMUNICATICNS

3 the line length is exceeded. Presumably, the length could be set
to 0 or 1, but this would cause the insertion of the line mark
after each character. Basic io.write file performs no buffering.
Every call to this service will resulE in transmission to the
device driver.

4. Question:
Can two or more logical devices have concurrent access rights to
an interactive device? (Two "internal files" referencing theuser's terminal.)

I AIE: It will probably be undefined what happens when two
programs/tasks try to read from the same terminal input stream
(and hence "erroneous" if not an explicit exception). To
accomplish your task, I would recommend that your virtual
terminal manager be the only process with the terminal
input/terminal output open, and that all other processes do
interactive I/O by using pipes to the virtual terminal manager.
The KAPSE allows multiple (Ada) tasks within the same program to
each be doing synchronous pipe I/O, with only the particular task
suspended which is actually waiting for input.

Pipe I/O is accomplished using normal TEXT 10, but with the
pipe/file opened in "SHARED STREAM" mode (see B5 pp. 40, 41 for
explanation of Shared Stream read/write, z- 25 for
explanation of use of FORM string for RESERVE_MODE
specification).

ALS: If the device is a terminal, VMS will allow concurrent read
and write access by multi-ple "internal files".

5. Question:
Does the AIE work with 3270-compatible devices?

AIE: The AlE will support 3270 compatible terminals, but will
not initially support the field protect/field read features in a
-way that is useful to the application programmer. instead, the
terminals will be made to look as much like a full-screen ASC7:terminal with cursor addressing.

I ALS: N/A

I
I

I
3-169I

3-170

I
I
i
I

I APPENDIX C

3 GLOSSARY

i ADE
Ada Development Environment

AIE Ada Integrated Environment

I AIM
AI APSE Interactive Monitor

ALS Ada Language System

AOS/VS
Advanced Operating System/Virtual Storage, a Data General
Corporation operating system for the ECLIPSE MV/Family of
machines.

APSE Ada Programming Support Environment

APSE program
A program that can be executed in the hosting APSE and uses only
KAPSE suoolied services to perform its function.

CAI S
Common APSE Interface Set, the KIT/KITIA effort to standardize
certain KAPSE interfaces.

CAISWG
Common APSE Interface Set Working Group, a working group within
the KIT/KITIA effort.

I
I

I

GLOSSARY

character
A member of a set of elements that is used for the organization,
control, or representation of data,

character echo
The act of re-transmitting a character immediately upon receipt
of it back to the entity that originally transmitted it.

character imaging device
A device that gives a visual reoresentation of data in the form
of graphic symbols using any technology, such as catnode ray
tube or printer.

character stream
An unbounded sequence of ASCII characters.

character strina
A bounded sequence of ASCII characters.

command scriot
A database file containing commands to the AIM command
interpreter. The command interpreter reads commands from the
command script rather than prompting the user interactively.

database file
A standard file in the APSE database.

DG
Data General

disolav
The area for visual presentation of d.ata o7 a cnaracter imaging
device.

displav terminal
A data communications device composed of a keyboard and a
display screen (usually a cathode ray tube).

EDT
An interactive full-screen editor supported by DEC on tie VAX
machine.

environment-deoendent
Using features which are unique to a specific Ada Program
Support Environment (such as ALS or AE).

3-172

3 GLOSSARY

3 erroneous
An Ada program which does not conform to the requirements of an
APSE program. The program might execute correctly within an

APSE in a given situation, but the program may not be considered
entirely reliable. An APSE program must use only KAPSE
services; any other services (such as host services) result in3 an erroneous program.

exclusive access
Control of a file (or, the terminal, in this case) -which
prohibits any other program besides the AIM from writing. to the
terminal screen.

host services
Facilities provided by the operating system of the host machine
underlying the KAPSE.

imace
IAn analog of the physical display device. The iage is the

entity that is mapped onto the display. Given a n um ber of user
defined images, only one at a time can be mapped onto te
display. The rest exist and are updated asynchronouslIy but are
not mapped onto the display until the user requests it.

interface
The olace at which independent systems meet and act Dn cr
communicate with each other.

iPC I nte rocess comrmunication.

KAPSE Kernel Ada Programing Support Environment.

kevboardI The pnysical input, device.

KAPSE Interface Team.

I K'T:A

KAPSE :nterface Team from :ndustry and Academ:a.
i LALRIAL Lookahead Left to Right; a method for parsing grammars.

3 1

I
3-173

I

GLOSSARY

line
A set of adjacen character positions in a visual display that
have the same vertical position.

maooinas
The relationships managed by the AIM connecting locical
representations of windows, images, and viewports to physical
representations on a display device.

MIL-STD
Military Standard.

node
Pertaining to the KAPSE database, either a file or a directory
in the tree-structured database.

NCSC
Naval Ocean Svst-ms Center

cad
Two files which contain a comoletz history c: window activity
that transpires from the beginning of pad mode until it is
terminated by the user or the window is destroyed. One pad, the
!NPUT oad, includes the input to the APSE program from the user
through the keyboard. The other pad, the CUTPUT pad, logs the
output to the disolay from the AM and any program initiated by
the AM.

Pace moce terminal
A screen-or ented diso.lay device which possesses extended
two-dimensional functional capabilities. Characters are

transmttted , received one at a time.

oce
A logical connection between an output file ot one proqram and
an input file of another program.

screen
The area for visual presentation of data on any vpe of
character imaging device, including printer and cathode ray tuoe
device.

STANDARD IN and STANDARD OUT
Input and output files defined in the package TEXT :0. ?'or AiM
purposes, these must be the only files used for terminal . ,

3-174

I
I GLOSSARY

3 task
An Ada program unit that operates in parallel with other program
units.

I term4 nal
A data communications device consisting of a keyboard and a
character imaging device.

Terminal Capabilities File
A file wIhich desc-ribes common terminal functions in terms of

I device-specific control sequences, for many different terminals.

terminal communication orotocols
Sequences of characters in which the relationshios between
specific characters are given meanings for different types o:
terminals.

transmit
To send data as a data stream for purposes of information
interchange.

user terminal
The terminal with which a user interacts in order to cormunicate
with an APSE program.

I 'VMS
Virtual Memory System, the DEC coeratinc system for the VAX
11-780.

3 v iewcort
The -ortion of the window displayed in the image.

viewoort header
A single highlighted line located at the too of a vie'oort.

-win do w3 An analog of the APSE procram's view of :-e termina .

I
I

I
I

3-175

3-1-76

I
I
I
I
I

APPENDIX D

REFERENCES

I D.1 GOVERNMENT STANDARDS

The following documents of the exact issue shown form a part of this
specification to the extent specified herein. In the event of
conflict between the documents referenced herein and the contents of
this specification, the contents of this specification shall be
considered a superceding requirement.

[DOD80] United States Department of Defense, "Requirements for Ada
Programming Support Environments" ("STONENAN"), February

* 1980.

CDOD83 I United States Department of Defense, "Reference Manual for
the Ada Programming Language, ANSI/MIL-STD-1815A-1983,"3 February 17, 1983.

[DID73 I Data Item Description, "Informal Technical Information,
DI-S-30593," March 73.

D.2 GOVEPNMENT SPECIFICATIONS

The following documents of the exact issue shown form a part of this
specification to the extent specified herein. In the event of
conflict between the document referenced herein and the contents of
this specification, the contents of this specification shall be

I considered a superceding requirement.

lINT82] Intermetrics Inc., "IR-678-l Computer Program Development
Specification for Ada Integrated Environment:
KAPSE/Datbase Type 35," Wakefield, MA, November 1982.

[KIT83] KAPSE Interface Team (Ada Joint Program Office), "Common3 APSE Interface Set", Version 1.1, September 1983.

3-177

REFERENCES
GOVERNMENT SPECIFICATIONS

[KIT85] KAPSE Interface Team (Ada Joint Program Office), "Proposed
Military Standard Common APSE Interface Set (CAIS)*",
January, 1985.

[SOF82 I SofTech Inc., Ada Problem Report 602, Waltham, MA,
November 1982.

[SOF83] SofTech Inc., "Draft Ada Language System Specification,"
Waltham, MA, November 28, 1983

D.3 OTHER GOVERNMENT DOCUMENTS

The following documents of the latest issue per date of this report
form a part of this specification.

[T182 I Texas Instruments, Advanced Computer Systems Laboratory,
"Proposal for Development of Ada Software Tools and
Interface Standards," Lewisville, TX, February 1982.

LTI83A] Texas Instruments, "APSE Interactive Monitor (AIM) Program
Performance Specification (PPS)," Contract
N66001-82-C-0440, 19 September 1983.

[TI83B I Texas Instruments, "APSE Interactive Monitor (AIM) Software
Development Plan (SDP)," Contract N66001-82-C-0440, 10 July
1983.

[TI83C Texas Instruments, "APSE Interactive Monitor (AIM)
System/Integration Test Plan (SITP)," Contract
N66001-82-C-0440, 23 December 1983.

[T183D I Texas Instruments, "APSE Interactive Monitor (AIM) Software
Quality Assurance Plan (QA)," Ccntract N6C"01-82-C-0440, 28
March 1983.

[TI83E I Texas Instruments, "APSE Interactive Monitor (AIM) Computer
Program Test Specification (CPTS)," Contract
N66001-82-C-0440, 15 September 1983.

CTI83F I Texas Instruments, "APSE Interactive Monitor (AIM)
Configuration Management Plan (CM)," Contract
N66001-82-C-0440, 28 March 1983.

[TI83G] Texas Instruments, "Interim Report on Interface Analysis
and Software Engineering Techniques," Contract
N66001-82-C-0440, May 1983.

3-178

I
I

REFERENCES3 OTHER GOVERNMENT DOCUMENTS

[TI83H] Texas Instruments, "Interim Report on Interface Analysis
and Software Engineering Techniques," Contract
N66001-82-C-0440, December 1983.

m [TI85A] Texas Instruments, "APSE Interactive Monitor (AIM) User's
Manual (TM)," Contract N66001-82-C-0440, July 1985.

(TI85B] Texas Instruments, "APSE Interactive Monitor (AIM) Program
Design Specification (PDS)," Contract N66001-82-C-0440,
July 1985.

[TI85C I Texas Instruments, "APSE Interactive Monitor (AIM)
System/Integration Test Procedures (SITPRO)," Contract
N66001-82-C-0440, July 1985.

[TI85D] Texas Instruments, "CAIS Rationale," Contract
N66001-82-C-0440, July 1985.

[TI85E] Texas Instruments, "Transportability Guide," Contract3 N66001-82-C-0440, July 1985.

[TI85F] Texas Instruments, "Installation and Maintenance Guide for
the APSE Interactive Monitor (AIM)," Contract
N66001-82-C-0440, July 1985.

[TI85G] Texas Instruments, "APSE Interactive Monitor (AIM)
Acceptance Test Plan (ATP)," Contract N66001-82-C-0440, 15
July 1985.

[TI85H I Texas Instruments, "APSE Interactive Monitor (AIM)
Acceptance Test Procedures (ATPRO)," Contract
N66001-82-C-0440, 15 July 1985.

3 D.4 SPECIAL SOURCES

-RT83] Verbal communications with Rich Thall of SofTech, Inc., Jan
26, 1983 at the San Diego KIT meeting.

CRT83A I Verbal communications with Rich Thall of SofTech, Inc.,
April 20, 1983 at the Willow Grove, PA KIT meeting.

CTT83 I Verbal communications with Tucker Taft of Intermetrics,
Inc., Jan 26, 1983 at the San Diego KIT meeting.

3-179

I - m.~ ~ m m~nm ~ m m m ~ m

REFERENCES
SPECIAL SOURCES

[TT83A I Verbal communications with Tucker Taft of Intermetrics,

Inc., April 21, 1983 at the Willow Grove, PA KIT meeting.

D.5 OTHER PUBLICATIONS

[ABB82] Abbott, Russell J., "Program Design by Informal English
Descriptions," Unpublished.

[AKIN81I Akin, T. Allen, "Virtual Terminal Handler Preliminary Quick
Reference," School of Information and Computer Science,
Georgia Institute of Technology, April 1981.

[ANS1731 American National Standards Institute, "American National
Standard Graphic Representation of the Control Characters
of American National Standard Code for Information
Interchange (ANSI Standard X3.32-1973)," July 1973.

[ANS1771 American National Standards Institute, "American National
Standard Code for Information Interchange (ANSI Standard
X3.4-1977)," June 1977.

[ANS179] American National Standards Institute, "American National
Standard Additional Controls for Use with American National
Standard Code for Information Interchange (ANSI Standard
X3.64-1979)," July 1979.

lAPSE82] "Working Paper: Ada Programming Support Environment (APSE)
Requirements for Interoperability and Transportability and
Design Criteria for Standard Interface Specifications," Not
Approved, October 1982.

[BOO83] Booch, Grady., Software Engineering with Ada. Benjamin
Cummings Publishing Company, Menlo Park, CA. Copyright
1983.

[BOR85 Borger, Mark W., "Software Design Issues in Ada," Journal
of Pascal, Ada, and Modula2, Volume 3, Number 3,
March-April 1985.

[BUH84] Buhr, R. J. A., System Design with Ada, Prentice-Hall,
Inc., 1984.

[COX83] Cox, Fred, "KAPSE Support for Program/Terminal
Interaction", Working paper for KITIA/ Working Group 1,
February 1983.

3-180

U

REFERENCES
OTHER PUBLICATIONS

[CSC82A] Computer Sciences Corporation, "Configuration Management
System Program Performance Specification (Draft)," Falls
Church, VA, August 1982. Prepared for Naval Ocean Systems
Center under contract N00123-80-D-0364.

[CSC82B] Computer Sciences Corporation, "Configuration ManagementISystem Interim Report on Interface Analysis," Falls Church,
VA, August 1982. Prepared for Naval Ocean Systems Center
under contract N00123-80-D-0364.

[DAT83A] Data General Corporation, "Advanced Operating
System/Virtual Storage (AOS/VS) Programmer's Manual Volume
1 System Concepts", Westborough, Massachusetts, March 1983.

[DAT83B] Data General Corporation, "Advanced Operating
System/Virtual Storage (AOS/VS) Programmer's Manual Volume
2 System Calls", Westborough, Massachusetts, March 1983.

[DAT84] Data General Corporation, "Ada Development Environment
(ADE) (AOS/VS) User's Manual", Westborough, Massachusetts,3 Mar7h 1983.

[DEC82] Digital Equipment Corporation, "VAX/VMS I/O User's Guide
(Volume 1)", Maynard, Massachusetts, May 1982.

IDP82] Datapro Reports on Data Communications, vol 2., Sept 1982,
"Display Terminals", p C25-10-101

3 CELS73 I Elson, Mark., Concepts of Programming Languages, Science
Research Associates, Inc. Paris, France 1973.

[FH83] French, Stewart and Harrison, Tim, "The APSE Interactive
Monitor," Texas Instruments, Inc., March 1983.

[FOR83] Foreman, John, "Experiences With Object-Oriented Design,"
AdaTEC, Cherry Hill, NJ, June 1983.

(FRA] Franck, R., "Design and Implementation of a Virtual3 Terminal for a Real-time Application System"

[FRE83] French, Stewart L., "A Virtual Terminal Specification and
Rationale," IEEE Proceedings, 7th International Computer
Software and Applications Conference, COMPSAC 83, November
7-11, 1983.

[GOL83] Goldberg, A. and Robson, D., SMALLTALK-80 The Language and
its Implementation, Addison-Wesley Publising Company,
-e-ding, MA, 1983.

I

3-181

REFERENCES
OTHER PUBLICATIONS

[G0075] Goodenough, John B., "Exception Handling Design Issues,"
A0M SIGPLAN Notices, July 1975, pp 41-45. Association for
Computing.Machinery, Inc.

[GREN80] Greninger, Lars and Roberts, Roger, "Considerations for a
Local Virtual Terminal Interface," Presented at IEEE
Conference, September 1980.

[GRR80] Groves, L.J. and Rogers, W.J., "The Design of a Virtual
Machine for Ada," Communications of the ACM, 1980.

[HAP83 I Habermann, A.N., and Perry, D.E., Ada For Experienced
Programmers, Addison-Wesley Publishing Company, 1983.

[HOA81 I Hoare, C.A.R., "The Emperor's Old Clothes," 1980 ACM Turing
Award Lecture, Communications of the ACM, Vol 24 No 2, Feb
1981.

[IS06421 International Standards Organization, Standard number: ISO
DP 6429, "Additional Control F'unctions for Character
Imaging Devices (Draft)," Not approved, April 1982.

[JOY81] Joy, W. and Horton, M., "TERMCAP," UNIX Programmer's
Manual, Seventh Edition, Berkeley release 4.1, June 1981.

[LAN79A] Lantz, Keith A., et.al,, "RIG: An Overview, Working
Paper," University of Rochester, Rochester, NY, 1979.

[LAN79B] Lantz, Keith and Rashid, Richard, "Virtual Terminal
Management in a Multiple Process Environment," Proceedings
of the Seventh Symposium on Operating Systems Principles,
(December 10-12, 1979).

[LAW78 I Lawson, James T. and Mariani, Michael P., "Distributed
Data Processing System Design - A Look at the Partitioning
Problem," IEEE Press, 1978.

[LOV81 I Loveman, David, "Ada Resolves the Unusual with
'Exceptional' Handling," Electronic Design, January 22,
1981.

[MAC81 I MacEwen, Glen H. and Martin, T. Patrick, "Abstraction
Hierarchies in Top-Down Design," The Journal of Systems and
Software 2, 213-224(1981), Elsevie-r-Science Publishing Co.

[MAG79] Magnee, F., Endrizzi, A., and Day, J, "A Survey of Terminal
Protocols," Computer Networks, 1979, pp 299-314.

3-182

I
REFERENCES

OTHER PUBLICATICNS

I [MEY81 I Meyrowitz, Norman and Moser, Margaret, "BRUWIN: An
Adaptable Design Strategy for Window Manager/Virtual
Terminal Systems," Department of Computer Science, Brown
University, December 1981.

[OLS83] Olsen, Eric W. and Whitehall, Stephen B., Ada for3 Programmers, Reston Publishing, Inc., 1983.

[PAR72] Parnas, D.L., "On the Criteria to Be Used in Decomposing
Systems into Modules," Communications of the ACM, Volume 15
Number 12, December 1972.

[PER83] Perry, John W., "Are We Wearing the Emperor's Old3 Clothes?", INFO-ADA ARPAnet message, 4 Nov 1983.

[SCH78] Schicker, P. and Duenki, A., "The Virtual Terminal
Definition," Computer Networks, 1978, pp 429-441.

[SIM76] DEC-System 10 Simula Language Handbook: Part 1: The
Programming Language Simula. Report no. C8398. Part 2:
DEC-System 10 Dependent Information, Debugging. Report co.
C8399. Part 3: Utility Library. Report no. C10045.
Rapportcentralen, FOA 1, S-104 50 Stockholm 80 Sweden.

[SPE81] Spencer, P.D. and Gordon, D., "Software DevelopmentMethods For Use With the IAPX432 Microprocessor,"
EUROMICRO, North-Holland Publishing Co., 1981.

[STE81] Stenning, Vic, Et Al., "The Ada Environment: A
Perspective," Computer Volume 14, number 6, June 1981, pp
26-34, 36.

I [SUK81I Sukamar, Srinivas and Wiese, John D, "Hardware and Firmware
Support for Four Virtual Terminals in One Display Station,"
Hewlett-Packard Journal, March 1981.

CTAF82 I Taft, S. Tucker, "Portability and Extensibility in the
Kernel and Database of a Programming Support Environment,"3 Intermetrics, March 1982.

CTAJ79 I Tajima, Takashi and Katsuyama, Yoshiki, "Layered and
Parametric Approach to Terminal Virtualization," Presented
at Internati.cna.! Conference on Communications, Boston, MA,
June 1979.

[TI81A I Texas Instruments, "Ada Integrated Environment,"
Lewisville, TX, March 1981. Prepared for Rome Air
Development Center (RADC) under DoD Contract
F30602-80-C-0293.

3
U

3-183

I

REFERENCES
OTHER PUBLICATIONS

(THA82] Thall, Richard, "The KAPSE for the Ada Language System,
SofTech Inc, Proceedings of the AdaTEC conference on Ada,
October 1982.

[WEB80] Websters New Collegiate Dictionary, G. and C. Merriam
Company, Springfield, MA, 1980.

(WOL81I Wolfe, Martin I., et al., "The Ada Language System,"
Computer, Volume 14, number 6, June 1981, pp 37-45.

3- 1"

I ~inaIl liiir all In ~terfac

'ein and..or o Imentrace,

Experiences Thie AIM..

San --,,ec , 9152111111111111111111111111

Cc~:~c: o. N66002-32-C--0440 111 litlliilltiI-R'No. A1

C:m:.cmn Gru ?.OO 111111111 1111

111111 INSllliii1111 il
11111INCORPORATED1.

liii~~~ 111117111I 111111 1 3118511

Ada is a registered trademarK of "_'e 2.S. Gover-men:, Ada Jcin:
Prccram Office (AZPO).

ALE is a trademark of ROLM Cor=oraticn.

DEC is a trademark of Digital Equi-ment C-ration.

ECLIPSE is a registered trademark of Data General Cor-oration.

EL:PSE MV/10000 is a trademark of Data General Cormora-ion.

ROLM is a registered trademark of ROLM Cor.:cra:icn.

VAX is a trademark of Digital Eyquipment Ccr-cration.

VMS is a trademark of Digital Eq-uipment Co-=craticn.

3-186

I
I
3 CONTENTS

S CHAPTER 1 INTRODUCTION

CHAPTER 2 EXPERIENCES WITH INFORMAL OBJECT-ORIENTED DES:GN

2.1 OBJECT-ORIENTED DESIGN REFRESHER 2-1
2.1.1 Defining The Problem 2-1
2.1.2 Developing An Informal Strategy 2-1
2.1.3 Formalizing The Strategy 2-2
2.2 HOW WE APPROACHED THE PROBLEM 2-4
2.2.1 Developing The Informal Strategy 2-4
2.2.2 The Two-pronged Analysis 2-5
2.3 AREAS OF CONFUSION 2-7
2.3.1 Objects 2-7
2.3.2 Terminology 2-8
2.3.3 Non-applicable Information. 2-8
2.3.4 Attributes. 2-9

2.3.5 Async.ronous Data And Tasks 2-9
2.4 IMPLEMENTATION EXPERIENCES BASED ON THE AIM S

OBJECT--j .ENTED DESIGN 2-10
2.4.1 AIM Window/Pad Relationship 2-10
2.4.2 AIM Image/Viewport Relationship 2-10
2.4.3 AIM Data Flow Model 2-11
2.5 OBJECT-ORIENTED DESIGN AND MIL-STD-1679 2-12
2.6 CONCLUSIONS 2-13I

CHAPTER 3 EXPERIENCES USING ADA LANGUAGE FEATURES

3.1 INTRODUCTION 3-1
3.2 PACKAGES 3-1
3.2.1 Exporting Entities 3-1
3.2.2 Importing Entities 3-3
3.2.2.1 Context Clauses 3-3
3.2.2.2 Cyclic Dependencies 3-4
3.2.3 Recompilation 3-5
3.3 GENERICS 3-5
3.3.1 Instantiating Generics 3-6
3.3.2 Summary 3-8
3.4 VARIANT RECORDS 3-9
3.4.1 Assignment To Variant Records 3-9
3.4.2 Summary 3-10
3.5 STRONG TYPING 3-10
3.5.1 Type Mismatches 3-11
3.5.2 Derived Types 3-11
3.5.3 Subtypes 3-12

3.5.4 Range Constraints 3-13
3.5.5 Operations On Imported Types 3-14I 3.6 STRING MANIPULATION 3-16
3.6.1 Formatting Strings 3-16

I
3 -187I

3.6.2 Strina Parameters . 3-17
3.6.3 A String Utility Package. 3-17

CHAPTER 4 ADA TASKING

4.1 INTRODUCTION 4-1
4.2 A TAXONOMY OF ADA TASKS 4-1
4.2.1 Server Tasks 4-2
4.2.2 Actor Tasks 4-3
4.2.3 Transducer Tasks...... 4-4
4.3 ADA TASKING BUILDING BLOCKS 4-5
4.3.1 Canonical Ada Task Sets 4-6
4.3.2 A Simple Example 4-7
4.4 ADA TASK START-UP_ . _ 4-8
4.4.1 Control Of A Starting Task's Execution 4-8
4.5 ADA TASK TERMINATION. 4-9
4.5.1 Graceful Termination Of Canonical Task Sets 4-10
4.5.2 Ada Task Termination Concerns 4-13
4.6 ADA TASKING AND AIM DATA FLOW 4-15
4.6.1 AIM Data Flow Model Skeleton 4-15
4.7 CONCLUSION 4-24

CHAPTER 5 EXCEPTIONS AND ERROR PROCESSING

5-1 INTRODUCTION 5-1
5.2 ERROR HANDLING TECHNIQUES 5-1
5.2.1 In-line Error Handling 5-2
5.2.2 Centralized Error Handling 5-4
5.3 ERROR HANDLING USING EXCEPTIONS 5-6
5.3.1 In-line Error Handling With Exceptions 5-6
5.3.2 Centralized Error Handling Using Exceptions . 5-7
5.3.3 Handling The Standard Exceptions 5-10
5.4 DESIGNING EXCEPTIONS INTO ADA PROGRAMS 5-10
5.4.1 Propagating Exceptions 5-10
5.4.2 Exception Visibility 5-11
5.4.3 The Cross-Reference Matrix 5-13
5.5 USING EXCEPTIONS FOR PpnCr(AM CONTROL 5-15
5.5.1 Detecting Expected Eyceptional Conditions 5-15
5.5.2 Side Effects Of Using Exceptions 5-17
5.5.2.1 Intermediate Values Of Variables 5-17
5.5.2.2 Experiences While Testing 5-18
5.5.2.3 Suppressing Runtime Checks For Errors . 5-18
5.6 GUIDELINES FOR USING EXCEPTIONS 5-19

CHAPTER 6 ENVIRONMENT EXPERIENCES

6.1 COMPILER EXPERIENCES 6-1
6.1.1 Storage Allocation Scheme 6-1
6.1.2 Storage Management Scheme 6-2
6.1.3 Implementation Of Tasking 6-3
6.1.4 Implementation Dependent Features 6-3

3-188

6.2 ENVIRONIENT COMPARISON: AOS/VS/ADE VS VMS 6-4
6.2.1 Compiler Of 6-4
6.2.1.1 Method Of Compilation 6-4

6.2.1.1.2 VAX/VMS 6-5
6.2.1.2 Error Messages 6-6
6.2.1.2.1 AOS/VS..... 6-6
6.2.1.2.2 VA.X/VMS....................6-7
6.2.1.3 Resultant Files 6-86.2.1.3.1 AOS/VS6-8

6.2.1.3.2 VAX/VMS. 6-a
6.2.1.4 Integration Into Environment 6-9
6.2.1.4.1 AOS/VS6-9
6.2.1.4.2 VAX/VMS 6-11
6.2.1.5 Functional Capabilities 6-12
6.2.2 Linker 6-13
6.2.2.1 Method Of Linking 6-13
6.2.2.1.1 AOS/VS 6-13
6.2.2.1.2 VAX/VMS.. 6-15
6.2.2.2 Error Messages 6-166. ..1 Aos/vS 6-166. ... VA /VM 6-1
6.2.2.3 Resultant Files 6-17I6.2.2.3.1 AOS/VS.6-17
6.2.2.3.2 VAX/VMS- 17
6.2.2.4 Integration Into Environment 6-17
6.2.2.5 Functional Capabilities. 6-18
6.2.3 Ada Source Code Debugger 6-18
6.2.3.1 Compiler/Linker Requirements 6-19
6.2.3.2 Functional Capabilities 6-19
6.2..4 Program Librarian And Library Structure . . . 6-21
6.2.4.1 ADE Program Library 6-21
6.2.4.2 ACS Program Library 6-22
6.2.4.3 Functional Capabilities 6-22
6.2.5 Configuration Manaqement And File Structure 6-24
6.2.5.1 ADE Configuration Management........6-24
6.2.5.2 VAX/VMS Configuration Management 6-24
6.2.5.3 Functional Capabilities 6-26
6.2.6 Text Editor 6-27
6.2.6.1 ADE Text Editor 6-27
6.2.6.2 VAX/VMS Text Editor 6-27
6.2.6.3 Functional Capabilities 6-28
6.2.7 Electronic Mailer.. 6-30
6.2.7.1 ADE Electronic Mailer 6-30
6.2.7.2 VAX/VMS Electronic Mailer 6-306.2.7.3 Functional Capabilities 6-306.2.8 Conclusions 6-31

CHAPTER 7 LIFECYCLE ANALYSIS

7.1 INTRODUCTION 7-1

7.2 PROJECT OVERVIEW. 7-1
7.2.1 Systems 7-4

3-189

7.2.2 Personnel . 7-4
7.3 AIM PROJECT EFFORT. 7-6
7.4 TESTING METHODOLOGY 7-10
7.4.1 Error Correction 7-10
7.5 LINES OF CODE 7-11
7.6 MODEL COMPARISONS 7-14
7.6.1 Lifecycle Models 7-14
7.6.1.1 40-20-40 Model 7-15
7.6.,.2 Brooks Model 7-18
7.6.1.3 GTE Model 7-20
7.6.2 Costing Models 7-22
7.6.2.1 SoftCost 7-22
7.6.2.2 Price-S 7-24
7.6.2.3 COCOMO. 7-25
7.7 CONCLUSIONS 7-27
7.7.1 Design Effort' 7-27
7.7.2 Implementation Ef ort............ 7-29
7.7.3 Testing Effort 7-29
7.7.4 LOC 7-30
7.7.5 Wrap-Up 7-30

CHAPTER 8 DIDS

8.1 PURPOSE 8-i
8.2 OVERVIEW 8-1
8.3 PROGRAM PERFORMANCE SPECIFICATION (PPS). 8-2
8.3.1 Requirements 8-2
8.3.2 Testing 8-2
8.4 ACCEPTANCE TEST PLAN (ATP).8-3
8.5 COMPUTER PROGRAM TEST SPECIFICATION (CPTS) . . . 8-4
8.6 ACCEPTANCE TEST PROCEDURES (ATPRO) 3-4
8.7 PROGRAM DESIGN SPECIFICATION (PDS) 8-4
8.8 SYSTEM/INTEGRATION TEST PLAN (SITP) AND PROCEDURES

(SITPRO) 8-5
8.9 STMMARY 8-5

APPENDIX A GLOSSARY

APPENDIX B REFERENCES

B.1 GOVERNMENT STANDARDS B-1
B.2 GOVERNMENT SPECIFICATIONS B-I
B 3 OTHER GOVERNMENT DOCUMENTS B-2
B.4 SPECIAL SOURCES B-3
B.5 OTHER PUBLICATIONS B-4

3-190

I
I
I
I

U CHAPTER 1

INTRODUCTION

This volume is the second of three which comprise the Final Report on
Interface Analysis and Software Engineering Techniques, as part of NOSC
contract N66001-82-C-0440. Presented within are the knowledge and
experience gained by the project team during the design and
implementation of the APSE Interactive Monitor (AIM).

The AIM is a tool designed to act as an interface between the user of
the APSE and the programs the user executes in the APSE. It is
designed to enable a user to execute multiple APSE programs from a
single terminal while keeping their interactive inputs and outputs
separate both logically and physically. The primary objective of the
AIM project is to assist the KAPSE Interface Team (KIT) in studying
interface issues while secondarily producing a useful tool for APSEs.
For a complete description of AIM functionality, consult [TI83A].

The AIM was desioned using an object-oriented methodology with Ada as
the design language. Object-oriented design together with Ada as the
Program Design Language (PDL) is attractive to modern software
developers for many reasons (300833:

1. object-oriented design directly supports software engineering
principles such as abstraction, information hiding, modularity, and

* localization,

2. the Ada languaqe embodies these ccncepts of modern software
methodologies,

3. Ada is more than just another programming language; it is a
language suitable for expressing solutions to problems throughout3 the life cycle of a software project, and

4. object-oriented design exploits the expressive power of the Ada
language.

3I
3-191

INTRODUCTION

Within this volume, specific areas of experience are discussed.

* Chapter 2 discusses object-oriented design and it's use in the
design of the AIM. An evaluation of our use of the design
methodology, composed after the implementation was complete, is
also included.

Chapter 3 presents general knowledge, related to the Ada language,
gained during the life of the AIM project.

Chapter 4 provides a detailed discussion of tasking within the Ada
language, including: classification of tasks, Ada tasking building
blocks, task start-up, and task termination.

* Chapter 5 discusses exceptions and error processing. Side effects
experienced while using exceptions and some guidelines for the use
of exceptions are also presented.

* Chapter 6 describes the experiences of the AIM project team while
using the tools provided in two Ada programming environments. A
comparison of the two Ada programming environments is provided.

* Chapter 7 is a detailed presentation and evaluation of the life
cycle of the AIM project. The results are evaluated using a number
of models and an analysis is presented.

* Chapter 8 discusses the contract specified Data Item Descriptions
(Dros) and the problems encountered while using them.

3-192

I
I
I

UCHAPTER 2

EXPERIENCES WITH INFORMAL OBJECT-ORIENTED DESIGN

2.1 OBJECT-ORIENTED DESIGN REFRESHER

The AIM was designed using the Object-Oriented Design (OOD) technique
presented by Grady Booch in his book "Software Engineering with
Ada" [B0083 . An extremely brief condensation of this technique.I]
follows.

The steps involved in informal Object-Oriented Design are:

1. Define the problem

2. Develop an informal strategy

3. Formalize the strategy

I2.1.1 Defining The Problem

Defining the problem is done in Object-Oriented Design using the same
techniques that are used in analyzing any problem: functional
description, data flow analysis, etc. It is important to note that
understanding a problem is typically a process that continues
throughout the life of a project. As understanding deepens, the
problem definition is refined and changed to match this newfound
understanding. This is reflected in changes to the informal
strategy.

-- 2.1.2 Developing An Informal Strategy

An informal strategy is an attempt to partition the problem spaceI into functional areas that parallel the conceptual view of the
problem. Here, the problem and its logical and physical partitions
are expressed in natural English descriptions using the terminology
that exists in the problem space, where no restrictions are placed on
the form of the text. At this time no attempt is made to force a

I
-- 3-193

EXPERIENCES WITH INFORMAL OBJECT-ORIENTED DESIGN
Developing An Informal Strategy

design structure onto the resultant partitions; however, later these
descriptions will be used to develop a more formal representation of
the problem space.

2.1.3 Formalizing The Strategy

The most difficult step in Object-Oriented Design is the
formalization of the strategy. In this phase, the objects, its
attributes, and its associated operations are identified. The actual
process is as follows:

1. Extract the nouns and qualifying adjectives from the informal
strategy. A subset of these will become the objects.

2. Extract the verb phrases from the informal strategy. A subset of
these will become the operations.

3. Establish the relationships among the objects.

4. Implement.

5. Perform object-oriented analysis on the objects as they in turn
are decomposed into simpler objects.

Identifying the nouns, adjectives, and verb phrases involves simply
going into the informal descriptions and underlining these words.
According to Booch, this should be a completely mechanical process.
For later reference and discussion, a definition of these terms is
impcrtant. A definition of noun, verb, adjective, and attribute is
taken from Webster's New Collegiate Dictionary [WEB80 1.

1. Noun - 1. A word that is the name of a subject of discourse (as
a person, animal, plant, place, thing, substance, quality, idea,
action, or state) and that in languages with grammatical number,
case, and gender is inflected for number and case but has
inherent gender. 2. a word except a pronoun used in a sentence
as subject or object of a verb, as object of a preposition, as
the predicate after a copula, or as the name in an absolute
construction.

a. copula - something that connects: as a: the connecting link
between subject and predicate of a preposition, b: a word or
expression that links a subject with its predicate (as a form
of be, become, feel, or seem).

3-194 i

EXPERIENCES WITH INFORMAL OBJECT-ORIENTED DESIGNI- Formalizing The Strategy

2. verb - a word that characteristically is the grammatical center
of a predicate and expresses an act, occurrence, or mode of
being, that in various languages is inflected for agreement with
the subject, for tense, for voice, for mood, or for aspect, and
typically has rather full descriptive meaning and characterizing
quality but is sometimes nearly devoid of these especially when
used as an auxiliary or copula.

3. Adjective - a word belonging to one of the major form classes in
any of numerous languages and typically serving as a modifier of
a noun to denote a quality of the thing named, to indicate its
quantity or extent, or to specify a thing as distinct from
something else.

4. Attribute - 1: an inherent characteristic; also: an accidental
quality. 2: an object closely associated with or belonging to a
specific person, thing, or office. 3: a word ascribing a
quality.

a. Characteristic - a distinguishing trait, quality, or
property.

According to Booch, nouns fall into three categories:

1. Common nouns - name of a class of entities (e.g., table,
terminal, sensor, switch).

2. Mass nouns and units of measure - name of a quality, activity, or
substance, or a quantity of the same (.e.g., water, matter,
fuel).

3. Proper nouns and nouns of direct reference - name of a specific
being or entity (e.g., nozzle-pressure sensor, my table, abort
switch).

The first two categories identify abstract data types, while the
proper nouns identify objects.

The adjectives identify attributes and qualities of the objects.
These adjectives can identify value ranges, parallelism, and other
characteristics of objects.

Verb-phrases translate into the operations performed upon the
objects. Adverb-phrases are also gathered and associated with the
operations. These are used to identify limits on the operations.

The next step is the establishment of the relationships. Here we

3-195

EXPERIENCES WITH INFORMAL OBJECT-ORIENTED DESIGN
Formalizing The Strategy

formally define the visible interfaces using Ada as the design
language. This is accomplished using the objects and their
operations that were identified earlier. The scope of visibility is
defined. This identifies which object is visible to which other
object(s). The scope and visibility is best presented graphically.

The iaiyrentztnr of the operations defined in the interfaces is
performed in Ada. As the prern t& [n :'oceeds and the nature of
the objects themselves are uncovered, the Object-Oriented es~ n
techniques are applied iteratively to the objects. This continues
until the entire system is designed.

2.2 HOW WE APPROACHED THE PROBLEM

2.2.1 Developing The Informal Strategy

We had the task of specifying and designing a tool that could
identify interface issues within an APSE. Due to the nature of the
contract, essentially a research and development effort, we had a
great deal of latitude in the functionality of the AIM. Our
definition of the problem took the following form.

An exhaustive literature search was followed by trips to
Carnegie-Mellon University in Pittsburgh and University of Rochester
in New York. The Gandalf system was examined at CMU for ideas
concerning virtual terminals and Ada support environments. The
Rochester Intelligent Gateway [LAN79A] (LAN79B] was examined at
University of Rochester for applicability to this project. These
systems were examined for ideas and terminology that were
subsequently folded into the AIM. Data flow diagrams were
constructed in an attempt to identify the data producers that were
being serviced by the AIM. Similarly, an itemized list of the
functions that the AIM would support was developed, reviewed, and
modified. The parallels that were found between the systems
researched and the AIM were exhaustively analyzed.

A problem area became apparent immediately. We started defining the
AIM by not only researching the existing similar systems, but also
gathering and examining the specifications for the two APSEs of
greatest interest: the Ada Language System (ALS) being developed by
the Army and the Ada Integrated Environment (AIE) being developed by
the Air Force. The examination of these specifications was a
mistake. There were easily identifiable areas within the ALS and AIE
where the AIM (as it stood then) could not operate. The natural
tendency was to define the AIM in terms of what the APSEs could
support, thus negating the research goals of the project. As we
realized that this was happening, we took the following steps:

3-196

I,
3 EXPERIENCES WITH INFORMAL OBJECT-ORIENTED DESIGN

Developing The Informal Strategy

1. We shelved the specifications of the APSEs.

2. We concentrated only on what we wanted the tool to do.

3. We developed a plan of attack as to when we would again refer to
the specifications.

By doing the definition in this manrer we were able to specify a tool
that truly identified interface issues and problems.

All of this was refined as necessary to provide the material that
went into the Program Performance Specification (PPS) [TI83A]. The
PPS was the informal strategy.

2.2.2 The Two-pronged Analysis

The informal strategy became a document in the form of MIL-STD- '3'679
Program Performance Specification (PPS). We proceeded to analyze it
using the Object-Oriented Design techniques. However, it became
apparent that something was not functioning correctly. Theidentification of nouns (underlining them in the document) was
turning up far too many to deal with properly.

3 Our process was then divided into two approaches.

1. Identify the nouns, verbs, etc exactly as described in the
Object-Oriented Design techniques. We would use them for
comparison later.

2. Temper the identification of nouns with reason, attempting to
locate nouns and phrases that meant the same thing or said little
of actual interest for a design. Again, list them for comparison
later.

3 One design engineer took one approach; another engineer took the
other approach. We found the second approach much more effective.
Ihe reasons were as follows:

1. the non-applicable information could be ignored.

2. the nouns (both implied and actual) could be identified
correctly.

3. the true attributes of the objects could be identified.

3 These will be covered in greater detail in the next section.

3
I

I 3-197

EXPERIENCES WITH INFORMAL OBJECT-ORIENTED DESIGN
The Two-pronged Analysis

As the Object-Oriented Design process continued we identified the
objects, their attributes, and thL operations that were to be
performed on them. The operations were separated into two areas:
selectors and actors. A selector is a function t'at returns a value
and does nothing to change the characteristics of an object. An
actor is a procedure or function that changes some characteri:t4(s)
of an object.

The major objects identified for the AIM's Structure Manager include:
w 1ndows, 1"tges, i pcAS prcgramz., anndf -he urer's terynin~l

As an example of the actor/selector interface classification, the
interfaces identified for window objects is listed below.

Window
attributes

name
is full

suspends output on full
input pad
output pad

actors
create
delete
switch to named window
next page of window
clear window
set suspend output on full attribute
reset suspend output on full attribute
suspend output
resume output
create/delete/close input/output pad
write to input/output pad

selectors
get first window
get next window
get previous window
get name
is on the screen
is full
is last window
get input/output pad name

From lists like this, all the AIM's interfaces were developed and
coded into Ada. These Ada interfaces (and many other things) were
incorporated into the Program Design Specification (PDS) [TId5B].

3-198

I

I
EXPERIENCES WITH INFORMAL OBJECT-ORIENTED DESIGN

AREAS OF CONFUSICN

S2.3 AREAS OF CONFUSION

AS the objects, their attributes, and the operations on them were
identified, problems arose. For many of them there were obvious
answers; for others, the answers were not so obvious. These areas
will be discussed here:

I 1. objects - what exactly is an object?k
1. terminology - inconsistencies are easily identified,

3. non-applicable information - other information is discussed in a

PPS besides t:-- information necessary for object identification,

4. attributes - what are thii.se and how are they identified?

5. asynchronous data and tasks - difficult to identify and quantify.

1 2.3.1 Objects

An object in the real world is something physical or mental of which
a subject is cognitively aware [WEB80 1. More simply, it is
something that can bc seen, touched or otherwise sensed. In the
SmallTalk Environment, an objet is a component of the system
represented by some private memory and a set of cperations [GOL83 1.
Similarly, in Ada we are going to represent our objects as packages;
therefore an object is a collection of data structures and the
operations that are performed on those data structures. This is
called data abstraction.

We are trying to represent the objects in the problem space with
objects in our abstraction. Given the definition of an object in the
real world, an abstract object can take many forms. Consider the
window as an example.

A window in the AIM system is defined to be an analog of the APSE
program's view of the terminal. The AIM will contain as many windows
as there are APSE programs running under the control of the AIM. The
question we faced was: Should the object (and thus the package) be
an individual window or the collection of all windows?

If the object was one window then the collection of these windows
would have to be made in the object that was using windows. Creating
or deleting windows would translate into simple initialiiation or
deletion of the window's internal data structures. It would be the
responsibility of the object using windows to maintain the list of
all windows and perform the operations to traverse this list. In the
implementation of the window package, whenever a function or

I
3-199

EXPERIENCES WITH INFORMAL OBJECT-ORIENTED DESIGN
Objects

procedure was called the window upon which the operation was to b-
performed would have to be passed in as a parameter.

If the object was the collection of all windows, then the object
making use of windows would not have to maintain the list. Creating
or deleting windows would involve both initializing or deleting the
internal data structures and removing the window from the list of all
windows. This removes some of the burden of maintenance from the
object using windows. However, to perform an operation (other than
create) another call must be made to retrieve the window of interest
given the name of the window. Although this is another level of
overhead, it maps closely to the functionality of the AIM command
interpreter.

We chose the latter approach for Structure Manager's objects.

2.3.2 Terminology

A very great side benefit of formalizing the strategy is the
identification of synonyms. We found that many synonyms existed for
exactly the same concept, object, operation, and/or attribute. A
complete list of these was developed, then the most appropriate word
(or phrase) was chosen to represent the multitude. We edited the PPS
to reflect the single word (or phrase) for each concept, object, etc.
The document was then much more readable, less confusinq, and more
consistent.

2.3.3 Non-api.licable Information

To perform the formalization of the strategy, the nouns, verbs,
adjectives, etc. are underlined in the informal strategy
specification (the PPS). We found that the document contained much
information that was not a part of the AIM itself. This ,nformaticn
took the form of:

1. Requirements on the APSE. Statements such as: "The AIM must
have the ability to create, open, and write to an indefinite
number of files using the existing APSE database services."

2. The required paragraphs in the PPS that have nothing to do with
the AIM in a technical sense. For example: 1.2 Mission; Section
2: Applicable Documents. Actually, only Section 3 was used to
create the informal strategy.

3. Transition material such as introductions.

4. The terminal capabilities configurator. This is another complete
tool that was requested by the customer. However, it was
requested that the descrip-ion of the tool be provided with the

3-200

I
EXPERIENCES WITH INFORMAL OBJECT-ORIENTED DESIGN

Non-applicable Information

I PPS of the AIM system.

This material had to be carefully sifted out.

I 2.3.4 Attributes

Given the above definition of "attribute" and "characteristic", it is
easy to conclude that Booch's definition of attribute is rather
limited. Attrinutes neea not be limited to just the adjectives, they
can also be nouns. Using the window example again, a winnow has the
following attributes:

1. its name,

5 2. a quality of being full,

3. a pad files,

4. a quality of being suspended.

A name is definitely a noun. A pad is not only a noun, it is an
identified object. Similar attributes exist for images, viewports,
and APSE programs.

It actually became quite confusing. Consider the viewport. 1Z a
window an "attribute" of a viewport? Taking the second part of the
definition of attribute, it seems that it is. If it is not an
attribute, then what is this association? These questions were
difficult to answer. We eventually assumed that they were
attributes, and therefore structured our system accordingly.

2.3.5 Asynchronous Data And Tasks

I The AIM has three ; curces of asynchronous data:

1. The user through his terminal,

2. The command interpreter through the script mechanism,

3. The APSE programs.

We had an ex'remely difficult time attempting to identify how the
asynchronous nature of the data flow would map into Ada.
Object-Oriented Design did not seem to provide support for
asynchronous situations. The Object-Oriented Design techniques were
supplemented with data-flow analysis. Even with this supplement, it
was difficult and confusing to identify appropriate objects and how
they mapped into Ada tasks.

3-201

..

EXPERIENCES WITH INFORMAL OBJECT-ORIENTED DESIGN
Asynchronous Data And Tasks

We eventually decided to use data queues to handle the asynchronous
nature of the flow. These queues became objects and translated into
generic packages. The problem typically associated with asynchronous
data flow, namely, critical regions, was also handled in this way.

Our team had very little experience with asynchronous data flow
within systems. This may have caused us some problems. However, it
is evident that Object-Oriented Design may have some deficiencies
h..n applied to asynchronous data flow.

2.4 IMPLEMENTATION EXPERIENCES BASED ON THE AIM'S OBJECT-ORIENTED
DESIGN

Given the aforementioned design issues, it was to be expected that
the actual implementation of the AIM program would necessitate some
modifications in the original design. The major design changes were
limited to the following areas:

* the relationship between windows and pads,

* the relationship between images and viewports, and

* the underlying data flow model.

A discussion of the details surrounding each of these areas follows.

2.4.1 AIM Window/Pad Relationship

In the original AIM design, windows and pads were considered
individual objects that were to be maintained in separate global
linked lists. Furthermore, there was confusion surrounding the exact
relationship between these objects: is a pad an attribute of a
window, or is a window an attribute of a pad, or both?

An implementation decision was made to encapsulate the pad related
interfaces within the Window Manager and consider a pad an object
attribute of a window. This decision eliminated che need for a
global linked list of pads, and thus, siplified the AIM design.

2.4.2 AIM Image/Viewport Relationship

In the original AIM design, a viewport was an object that contained a
window/image pair and was to be inserted into a global linked list
within the AIM system. Furthermore, the original definition of an
image object included a viewport component, and therefore, the
image/viewport inter-relationship had redundancies.

For simplicity, the notion of a global linked list of viewports was
eliminated in the AIM implementation. A more efficient technique of

3-202

I

EXPERIENCES WITH INFORMAL OBJECT-ORIENTED DESIGN
AIM Image/Viewport Relationship

3 maintaining viewport linked lists on an image-by-image basis was
instrumented. Although this approach eliminated the redundancies of
the original design, there was another inherent problem caused by the
inter-relationship of the images and viewports: since IMAGE and
VIEWPORT are private data types in different packages, an additional
set of interfaces was needed by the Image Manager to maintain its

- images' linked lists of viewports as it cni!Id riot do so directly.

For instance, to create a viewport (i.e.--window/image association
pair) the AIM Command Interpreter must call the Viewport Manager's
ASSOCIATE procedure which in turn calls the Image Manager's
INSERT VIEWPORT procedure which in turn must call the Viewport
Manager's INSERT VIEWPORT IN LIST procedure. The total effect of
this calling sequence is that a new viewport (object) is createu and
it is inserted into a linked list belonging to its implied image.

2.4.3 AIM Data Flow Model

The original AIM data flow model was designed in a somewhat ad-hoc
manner. The Object-Oriented Design applied well ror the major
objects of the AIM system: windows, image, viewports; however, it
left a large void in the heart of the system, namely in the areas ofdata flow and program control. There are various rationalizations
that might argue for why this situation came about:

I *inexperience in using Object-Oriented Design,

* Naivety towards Ada language (specifically Ada tasking),

* Inexperience in designing/developing multi-tasking systems, and

Deficiency of Object-Oriented Design in the areas of concurrency
and data flow.

To solve this problem, our design team attempted to fill these gapsUby using conventional data flow design techniques. This application
of a traditional design methodology lead to a data flow model which
consisted of one global asynchronous data queue and various Ada tasks
to service this queue (the design goal was to minimize the number of

-- Ada tasks wherever possible due to our tasking inexperiences).
Needless to say, due to the AIM's highly asynchronous nature, this
single queue data model was inadequate.

During the implementation, a general purpose data flow model was
conceived using the notion of Ada task sets (see Chapter 4) in
combination with a traditional data flow analysis approach. Although1 this technique was quite effective, the final data flow model still
evolved through two generations of modifications befcre it was

2

3-203

EXPERIENCES WITH INFORMAL OBJECT-ORIENTED DESIGN
AIM Data Flow Model

generalized enough to be used for the AIM.

In retrospect, there seemed to be one major drawback to using
Object-Oriented Design for the definition of the original and
subsequent AIM data flow models: Object-Oriented Design does not
identify the program control operations and inter-relationships that
typically are associated with a system of Ada tasks. In this vein,
it is our contention that Object-Oriented Design alone is not
conceptually powerful enough to support the design of complex
concurrent systems, and therefore must be used in conjunction with a
data flow analysis approach based on the fundamental notion of Ada
Task.ng building blocks.

2.5 OBJECT-ORIENTED DESIGN AND MIL-STD-1679

The informal strategy was documented as MIL-STD-1679 Program
Performance Specifi-ation. The most applicable sections were "3.3
Functional Description" and "3.4 Detailed Functional Requirements."
Originally each functional unit was described using the following
format:

1. Functional description

a. narrative description,

b. inputs,

c. outputs,

d. processing requirements,

e. miscellaneous.

2. inLerfaces

a. narrative description,

b. description of the data that this interface handles,

c. miscellaneous.

2. Miscellaneous information and notes.

The format described above was eventually condensed and converted
into the required format for the PPS. Due to the research nature of
the AIM contract, our format was adapted slightly from the actual PPS

3-204

I

I

I EXPERIENCES WITH INFORMAL OBJECT-ORIENTED DESIGN
OBJECT-ORIENTED DESIGN AND MIL-STD-1679

I format as defined in the Military standard. This adaptation added

more subdivisions to increase clarity. The final format used was:

3 1. introduction,

2. interface summary,

* 3. inputs,

4. processing description,

5. errors,

3 6. outputs.

This was a perfectly acceptable format for developing the formal
strategy.

2.6 CONCLUSIONS

The informal Object-Oriented.Design methodology worked quite well
after overcoming the problems. As more projects use this technique,
it should be refined to reflect this experience. Refinement can take
many forms. Choices include:

1. Limit the form of the Object-Oriented Design informal strategy.
It is obvious that the informal strategy can be more effective if
Object-Oriented Design techniques are in mind when writing the
specification of the informal strategy.

2. Formalize the technique. Object-Oriented Design using a more
formal approach could provide benefits in software productivity,
maintainability, and reliability.

3. Mate the methodology with another. Data flow and/or data
structure analysis can be used to supplement Object-Oriented
Design and provide more insight into the problem space.

4. More rigorously define the Object-Oriented Design steps mapping
the informa. strategy into the formal one.

The Military's Data Item Desriptions (DID's) are oriented toward an
assembly language implementation. This is because most projects are
confined to assembly language due to performance constraints. The
DID's were designed to support this type of project well. Now,
however, the DOD will start requiring Ada on all embedded computer
projects. As such, the DID's should be restructured to more
accurately reflect the design techniques that Ada supports the best.

3-205

I l

3-206

1
I
I
I
I

CHAPTER 3

3 EXPERIENCES USiNG ADA LANGUAGE FEATURES

1 3.1 INTRODUCTION

This chapter is the first of three chapters which presents a
discussion of our experiences using the Ada language throughout the
design and implementation phases of the AIM. This chapter addresses
a variety of Ada language features: packages, generics, variant
records, strong typing, and string manipulation. Detailed
discussions on Ada tasking and exceptions are presented in the two
chapters following this one.

3.2 PACKAGES

An Ada package is a fundamental program unit which allows the user to
encapsulate a group of logically related entities. As such, packages
directly support the software principles of data abstraction and
information hiding.

Within the AIM, each major object identified via the object-oriented
design process, along with its attributes and operations, was
directly translated into Ada package specifications and bodies.
Collectively, all the package specifications represent the top-level
view of the AIM program.

The Ada package is an important language construct in terms of
designing a software tool using Ada. This section addresses some of
the issues one faces when using packages in the design of a largesoftware tool.

3 3.2.1 Exporting Entities

Any object, type, or subtype declared in the visible part of a
package specification is said to be exported by that package since it
is accessible from outside the package itself. Additionally, anyU- operations to be performcd on the exported private types must be
provided by that package. This will require that functions and/or

3

I
3-207I

EXPERIENCES USING ADA LANGUAGE FEATURES
Exporting Entities

procedures be defined to provide the necessary operations.

When numerous program units share exported objects an interesting
design decision must be made. Consider the following scenario:
several, perhaps physically separate, yet logically inter-related,
program units need to access the same data structures (objects).
What is the best design scheme to use in this situation? A list of
viable alternatives follows:

1. pass the necessary data structures to the program units via
parameters,

2. nest the program units within a higher level package which
encapsulates the data structures, or

3. globally export the data structures from a high level (support)
package.

The first alternative would be less efficient than the other two as
it expends additional overhead in processing the parameters. Also,
it does not completely solve the problem since some program units
must still export a global object to be used as the actual parameter.

The second alternative has a couple of drawbacks. First, nesting
program units within a higher level package makes the private part of
the encapsulating package visible; therefore, a level of information
hiding is lost. Secondly, the nesting structure does not necessarily
reflect the original design. If the program units are indeed tightly
inter-related then the original design should have reflected this
nesting structure; otherwise, another design scheme is needed.

The last alternative is a simple, general purpose scheme. Its only
drawback lies in the fact that all the data objects are globally
accessible.

All three esign schemes have their drawbacks, but depending on the
inter-relations of the program units sharing the data objects, the
second alternative is probably the most attractive to the software
design engineer. Even though the private part of the encapsulating
package becomes visible to the nested program units, the shared data
objects themselves can be hidden from outside the package by
elaborating them within the body of the encapsulating package. The
third alternative is simple and general purpose, but it does not
directly support information hiding and thus is less attractive. The
parameter passing approach is more cumbersome for the implementor and
less efficient due to the overhead costs of processing the additional
parameters.

3-208

i

EXPERIENCES USING ADA LANGUAGE FEATURES
Importing Entities

1 3.2.2 Importing Entities

Any object, type, or subtype required by a compilation unit that is
not defined within that compilation unit must be imported.
Importation means to make the objects, types, or subtypes visible to
the compilation unit to allow use of them by the compilation unit.
The imported entities are made visible (if only the WITH clause is
included) or directly visible (if the WITH and USE clauses are
included). If two or more compilation units are mutually dependent,
cyclic dependencies can occur.

1 3.2.2.1 Context Clauses

A context clause is used to specify the library units whose names areI needed within a compilation unit. Dependencies among Ada compilation
units are defined by WITH clauses; that is, a compilation unit that
mentions other library units in its context clause depends on those
library units. A library unit mentioned in a WITH clause becomes
visible to the compilation unit. If a USE clause is also included,
the library unit becomes directly visible, eliminating the need to
use the library unit name to completely qualify any of the library
unit's entities. To avoid additional dependencies among compilation
units and thus unnecessary compilations, the use of context clauses
should be deferred as long as possible. Consider the following code:I

-- #1 --
package A is

procedure FOO; -- depends on package B

end A;

-- #2 --
package body A is

I procedure FOO is separate;

end A;

-- #3 --
separate (A)
procedure FOO is
begin
B.SUBTLE;

end FOO;

i Example 3.1--Placement of a context clause.

i

3-209

EXPERIENCES USING ADA LANGUAGE FEATURES
Context Clauses

The procedure A.FOO depends on the package B; therefore, there are
logically three places that the necessary context clause ("WITH B;"
could be placed in this code:

* before the specification of package A,

* before the body of package A, or

* before the body of the procedure FOO.

The placement of the context clause has some subtle ramifications
which argue for deferring it for as long as possible:

* if it is placed before package A's specification, the
specification and body of package A are both potentially affected
by a change in package B,

* if it is placed before the body of package A, the entire body of
package A is potentially affected by a change in pac-age B,

* if it is placed before procedure FOO's body, the body of FOO is
the only compilation unit potentially affected by a change in
package B.

Given the above rationale, the WITH clause should be placed before
the body of the procedure FOO.

Another reason for deferring the use of context clauses is to avoid
cyclic dependencies among compilation units.

3.2.2.2 Cyclic Dependencies

A cyclic dependency occurs when compilation units are mutually
dependent. The simplest case of this is when the specification of
unit A depends on unit B and vice versa. This type of problem is
generally caused by the misuse of context clauses; therefore, in most
cases, it can be avoided by merely using them correctly. The Ada
Language Reference Manual (LRM) [DOD831 states that "a compilation
unit must be compiled after all library units named by its context
clause". This implies that the specification of package A must be
compiled after the specification of package B, but since B also names
A in its context clause, the specification of package A must be
compiled before the specification of package B. This mutual
dependency results in a classic forward referencing problem.

This problem can be simply avoided by preceding the bodies, rather
than the specifications, with the necessary context clauses. This
concept can be carried even farther by deferring the use of context
clauses to separate compilation units at the package body level. In

3-210

U

EXPERIENCES USING ADA LANGUAGE FEATURES
Cyclic Dependencies

I general, unless data types or objects are being imported, any
compilation unit, excluding the main program, that depends on another
package(s) should be compiled as a separate subunit of its parent;
the separate compilation unit can then be preceded by the necessary
context clause. This convention not only supports the deferral of
using context clauses, but also localizes their effect.

1 3.2.3 Recompilation

The adverse effect of loss of time due to recompilation can be
reduced if properly addressed during the design phase. Without
careful pianning, even minor changes to the design during the
implementation phase can require a massive recompilation of the
system. Critical design reviews are one mechanism for insuring that
the functionality of each package is clearly defined, thereby
reducing the potential need for changes to packages. The key to

critical design reviews is the group involvement they encourage.
Ideas and concerns expressed from a number of sources help to insure
that the functionality of each package is clearly defined.

During the implementation phase, the guidelines described in the
cyclic dependencies section go a long way toward reducing the amount
of recompilation required oy most changes to a system design. For
now, ignore the obvious recompilation issues related to package
dependencies and concentrate on the package itself. Obviously, a
change to the package specification requires that the complete
package body must be recompiled. Similarly, a change to the package
body proper requires that all procedures, task bodies, and functions
within that package be recompiled, even if they are separately
compilable units. The point to be made is: with proper design
techniques, most changes that occur during the implementation phase
only involve specific procedures or functions. If they are
separately compilable, the time involved in recompilation is
minimized since other subprograms within the package need not be
recompiled.

1 3.3 GENERICS

A generic unit is a template, which can be parameterized and from
which corresponding nongeneric subprograms or packages can be
obtained. The resulting program units are said to be instances of
the original generic unit; an instantiation is defined as the process3 of creating an instance of a generic unit.

3-211

EXPERIENCES USING ADA LANGUAGE FEATURES
Instantiating Generics

3.3.1 Instantiatinq Generics

A generic unit is a very powerful construct of the language. It
defines a program unit template, along with generic parameters which
support the tailoring of that template to particular needs. The true
power of a generic is evident when it is instantiated. Consider the
following Ada code:

generic

type ELEMENTS is private;
SIZE : POSITIVE;

package STACKPACKAGE is

type THESTACK is private;

function TOP ELEMENT(STACK : in THE STACK
return ELEMENTS;

function STACK IS EMPTY(STACK : in THESTACK
return BOOLEXN;-

procedure CLEARSTACK(STACK : in out THESTACK);

procedure PUSH (FRAME : in ELEMENTS;
STACK : in out THE STACK);

procedure POP (FRAME : out ELEMENTS;
STACK : in out THESTACK);

NULL STACK !!xceptio",
STACK OVERFLOW : exception;
STACK-UNDERFLOW : exception;

private

type STACK_LIST is array (1 .. SIZE) of ELEMENTS;

type THE STACK is
record
CONTENTS : STACK LIST;
TOP : NATURAL range NATURAL'FIRST .. SIZE := NATURAL'FIRST;

end record;

end STACK PACKAGE;

Example 3.2--Generic Stack Package.

3-212

I
EXPERIENCES USING ADA LANGUAGE FEATURES

Instantiating Generics

U The instantiation of this generic package requires a type parameter
fOL both ELEMENTS and SIZE. This allows the user of the generic to
specify the type of elements that will be on the stack and also the
logical limitation of the stack's size. Assuming the generic package
is called STACK PACKAGE, a typical instantiation would look like:

MAX-LEVEL : constant := 10;
MAXSTRING LENGTH : constant :- 30;
subtype CURRENTLEVELRANGE is POSITIVE range 1..MAXLEVEL;

type STACK FRAME is
record
PROMPT STRING : STRING(1..MAX STRING LENGTH);
CURRENT LEVEL : CURRENTLEVELRANGE;-

end record;

with STACK PACKAGE;
package PROMPT STACK iz "ew STACK PACKAGE

ELEMENTS => STACK-FRAME,
SIZE => MAX LEVEL);

3 MYSTACK : PROMPTSTACK.THESTACK;

I Example 3.3--Instantiation of the stack package.

This instantiation has the following effect:

1 1. the stack elements are of type STACKFRAME,

2. the logical size Qf the stack is MAX_LEVEL elements,

3. a stack type, THESTACK, is now exported by PROMPTSTACK,

4. the user of the PROMPT STACK package can now elaborate a family
of identically configured stacks using the exported stack type,

5. the following operations are now available for objects of type3 PROMPTSTACK.THESTACK:

a. CLEARSTACK

5 b. TOPELEMENT

c. PUSH

I

3-2 13

EXPERIENCES USING ADA LANGUAGE FEATURES
Instantiating Generics

d. POP

6. the following exceptions can be raised by using the stack's
operations:

a. NULL STACK

b. STACKOVERFLOW

c. STACKUNDERFLOW

7. the implementation details of the stack are not visible outsiae
the generic stack package.

Referring to points 4 and 5, the example STACK PACKAGE provides the
capability to create and manipulate numerous Tdentical stacks- of tte
type STACK PACKAGE.THE STACK with one instantiat:on or the generic
package; that is, N stacks per instantiation. This is possible since
every function and procedure uses a parameter of type
STACK PACKAGE.THE STACK. In this case, the various stacks will truly
be identical. The elements of each stack will be of the same type
and the size of each stack will be identical. If a system needs to
use more than one stack, and each is structured the same, then this
implementation would be beneficial since it can reduce the total
amount of code in the system. However, there are a few points to
consiaer.

Objects of type STACK PACKAGE.THE STACK must be declared and the
instantiation must precede the declaration. This may prevent some
desired level of information hiding. Usually, numerous identical
stacks are not required. If the STACK PACKAGE is implemented as one
stack/instantiation, then the type declaration for THE STACK can be
removed from the visible section of the specification. Naturally,
all of the parameters of type THE_STACK ca;, then be removed from the
procedures and functions.

3.3.2 Summary

The full power of generic program units cannot be completely
appreciated until they are instantiated and used. A prime example of
this is a generic package. Often, packages (including generics)
export one or more types. Generic packages with parameters provide
the facility for tailoring a set of logically related entities
(types, objects, procedures, functions, exceptions) to a particular
type parameter. In essence, the generic package 'becomes' the type.

3-214

U

3 EXPERIENCES USING ADA LANGUAGE FEATURES
Summary

I For example, a generic package can encapsulate its own type
declarations; therefore, if these declarations depend on the
generic's type parameter, the instantiating program unit inherits
'new' data types which are derived from its own specification of the
actual generic paramater. In the above example, PROMPT STACK is an
instantiation of STACK PACKAGE with STACK FRAME and MAX LEVEL as the
actual generic parameters. PROMPTSTACK his thus inheriEed the new
type, THE STACK, which is defined in terms of the actual generic
parameter STACK FRAME. This technique provides the capability of N
identical stacks/instantiation. In this way, one can essentially
define generic types for data structures. If numerous identical
stacks would not be required, the type THE STACK could be removed
from the specification, thereby eliminating the need for most of the

* parameters to the procedures and functions.

3.4 VARIANT RECORDS

A variant record in Ada is a record type with a discriminant and a
variant part. The variant part specifies alternate lists of
components for the corresponding value or values of the discriminant.

3 3.4.1 Assignment To Variant Records

In Ada one can declare a variable of a variant record type either as
an object that can represent any one of the variants or as an object
that has a specific variant. The distinction is made in the object
declaration by specifying the discriminant value or by omitting it.
For example,

Itype TOKEN ENUM is (PROCSYM, RETURN SYM, ENDYM);
subtype TOKENSTRINGTYPE is STRINGTI..5);

type BOOLEANRECORD UNIQUE : boolean := FALSE)
is record

case UNIQUE is
when TRUE =>
TOKEN TYPE : TOKEN EN.PM;
TOKENSTRING : TOKENSTRING TYPE;

when FALSE =>3 null;

end case;3 end record;

REC 1, REC 2 : BOOLEAN RECORD;
REC TRUE : BOOLEAN RECORD(TRUE);3 RECFALSE : BOOLEANRECORD(FALSE);

Example 3.4--Variant Records.

3

3-215

EXPERIENCES USING ADA LANGUAGE FEATURES
Assignment To Variant Records

In this example, REC 1 and REC_2 are elaborated as objects that can
represent both variant cases of the variant record type; whereas,
REC TRUE an T-C FALSE are objects that specifically represent the
TRUE and FALSE- variants of BOOLEAN RECORD respectively. As a side
note, unconstrained elaborations, sUch as REC 1 and REC 2, are
allowed only if the discriminant in the type declaration has a
default value.

Direct assignment to a discriminant of an object is not allowed by
the language rules; therefore, the only way to change the value of a
discriminant of a variable is to assign a (complete) value to the
variable itself. Thus, the only way to assign a new value to a
variant record variable is via an aggregate assignment, provided the
first value of the aggregate corresponds to the discrminant.
Examples:

REC 1 := BOOLEAN RECORD'(TRUE,PROCSYM,"ABCDE");
REC FALSE := BOOLEAN RECORD'(UNIQUE => FALSE);
-- Note: named notat-on is required for single valued aggregates

Example 3.5--Aggreqate Assignment Statements

3.4.2 Summary

In order to have variant records in Ada one must elaborate record
objects without specifying a value for the discriminant(s). Such
object declarations are allowed only if the record's discriminant has
a default value. Since direct assignments to discriminants are
prohibited by the language rules, only an aggregate record assignment
can change the value of the discriminant, and thus, change the value
of the entire record.

3.5 STRONG TYPING

Ada is a strongly typed language. This means that objects of a given
type may take on only those values that are appropiate to that type,
and furthermore, the only operations supported for an object are
those defined by its type. This section discusses some issues
concerniiy Ada's typing mechanism, including:

1. parameter type mismatches,

2. derived types,

3. subtypes,

3-216

EXPERIENCES USING ADA LANGUAGE FEATURES
STRONG TYPING

3 4. range constraints, and

5. operations on imported types.

3.5.1 Type Mismatches

3 Type mismatches between the formal and actual parameters of a program
unit are a common mistake made when developing a large software tool.
This kind of problem can be addressed in the design phase of the
tool. For example, in the design of the AIM, a general pool of data
types and objects was encapsulated in the AIM SUPPORT package. The
contents of this support package were then used by other program
units to ensure consistency between parameter types, data types, and
actual data objects. As further testimony to this design approach,
other support packages evolved for the AIM, including

HELP INFO SUPPORT, COMMAND INTERPRETERSUPPORT, STRINGUTILITIES,
as STACK PACKAGE, and QUEUE PACKAGE.

3.5.2 Derived Types

3 A derived type definition defines a new (base) type whose
characteristics are derived from those of The parent type. Declaring
a derived type can have interesting side effects. Consider the3 following:

with TEXT 10;
procedure DERIVED STRING is

- LENGTH constant := 20;
type MY STRING TYPE is new STRING(l..LENGTH);
MYSTRING MY-STRINGTYPE;

begin
MY STRING "This should not work";
TEXT IO.PUT(MY STRING);

end DERIVEDSTRING;

Example 3.7--Derived Types.

In this example, MY STRING TYPE is a derived type of STRING with a
range constraint. By declaring this 'new' string type, NONE of the
TEXT_10 procedures with a parameter of type STRING can be used
directly with the 'new' string type. To use the TEXT 10 procedures
an explicit conversion, from MY STRING TYPE to STRING, Ts necessary;
therefore, the code shown in example 3.6 is incorrect; the Data
General/Rolm Ada compilation listing for this code is presented in
example 3.7.

II
3-217l

EXPERIENCES USING ADA LANGUAGE FEATURES
Derived Types

Ada 2.20.0.0 5/17/85 at 8:35:15 :USERI:TESTADA:TEST.ADA
--

1 with text io;
2 procedure-DERIVEDSTRING is
3
4 LENGTH : constant := 20;
5 type MYSTRING TYPE is new STRING(l..LENGTH);
6 MYSTRING : MYSTRINGTYPE;
7
8 begin
9'

10 MY STRING := "This should not work";
11 TEXT IO.PUT(MY STRING);

--- --------- ---------------------------------------

TEXT IO.PUT (MY STRING);
Expanded name TEXT IO.PUT has no definition that matches

parameter list TMY_STRING).
----- +--- ---------------------------------------

12 1
13 I end DERIVED STRING;

Example 3.7--Incorrect Ada Program

3.5.3 Subtypes

A subtype, unlike a derived type, does not define a new type; rather,
it provides a new name for another (potentially) constrained data
type. As is implied here, a constraint on the base type of the
subtype is optional; therefore, a subtype name can be a synonym of
its base type's name.

This feature has an interesting, but potentially troublesome,
application. It can be used within a program unit to locaily define
data types that are imported by that program unit. Consider the
following:

3-21F

U
EXPERIENCES USING ADA LANGUAGE FEATURES

Subtypes

3 package SYSTEMSUPPORT is

I MAXNAMELENGTH : constant := 20; -- characters in a name

type INTEGER RANGE is range 1..MAX INTEGER;
type NAMEINDEXRANGE is range I..RMAX_NAMELENGTH;

subtype NAME is STRING(1..MAXNA4ELENGTH);

e I
end SYSTEMSUPPORT;I-
with SYSTEM SUPPORT;

package SOMEPACKAGE is

subtype INTEGER RANGE is SYSTEM SUPPORT.INTEGER RANGE;
subtype NAME INDEX RANGE is SYSTEM SUPPORT.NAME INDEXRANGE;3 subtype NAME is SYSTEM_SUPPORT.NAME;

end SOMEPACKAGE;

3 Example 3.8--Local synonyms for imported data types

Some of the types (and subtypes) of AIM SUPPORT have been given local
names in SOME PACKAGE. This 'aliasing7 localizes the scope of those
imported types' names. This technique might be considered for
heavily used imported types.

The disadvantage of aliasing types imported from another package

involves traceability. Much like the context clause USE, aliasing
types tends o make it difficult to determine the origin of the
type(s). In essence, aliasing removes the need to completely qualify
a type. Often during the maintenance phase, someone other than the
original designer or implementor is involved with the code. it
should be obvious that this added level of indirection has the

i potential for hindering the maintenance of a package.

3.5.4 Range Constraints

The ability to specify a range constraint for a given data tyrpe is a
valuable feature of the Ada language and should be utilized whenever
possible. By using range constraints, a programmer is insuring that
the source code will be more portable than code that does not use
them. Consider the following:

I
3-2 19

EXPERIENCES USING ADA LANGUAGE FEATURES
Range Constraints

subtype INT 1 TYPE is INTEGER;
subtype INT_2_TYPE is INTEGER range i..100;

The range of values for objects of subtype INT 1 2 TYPE is explicitly
known to be 1..100, whereas, the range of values for objects of
subtype INT 1 TYPE is implementation dependent. Thus, INT 2 TYPE is
more portable than INT 1 TYPE since the latter's range of values
could vary among compiler-implementations. For example, a single
precision INTEGER value on an 8-bit machine will have quite a
different set of values from that of a 32-bit machine.

The use of previously declared range constraints in specifying the
index range for an array is also a recommended practice. Meaningful
names associated with index constraints of arrays can better
represent real world abstractions.

3.5.5 Operations On Imported Types

Operations on types in Ada are restricted by the strong typing built
into the language. For types that are imported from another package,
even the operations on these types must be imported. This requires
that operators, like other imported entities, must be completely
qualified to be used. Noting that WITH clauses provide visibility
and USE clauses provide direct visibility, consider the following
example:

3-220

I
EXPERIENCES USING ADA LANGUAGE FEATURES

Operations On Imported Types

U
package MYPACKAGE is

Stype INTGR is new integer;

YOURS : INTGR := 2;

3 end MYPACKAGE;

with MY PACKAGE;
use MY PACKAGE;procedure TEST is

3 MINE MYPACKAGE.INTGR := 1;

begin

I MINE := MY_PACKAGE."+"(MINE,MYPACKAGE.YOURS);

YOURS : YOURS + MINE;

MINE : MINE + MYPACKAGE.YOURS;

3 end TEST;

Example 3.9--Operator notation for imported typer

I The prefix operator notation used in th' first assignment statement
is required when the package My PAC1AGE is only visible to the
procedure TEST. This is due to the -equirement to completely qualify
all imported entities. The infix operator notation used in the
second assignment statement is allowed when the imported package is
directly visible. In the third assignment statement, objects are
completely qualified as an aid in traceability of the object YOURS.

Admittedly, the infix notation is easier to read because of its
widespread use. However, while significantly more cumbersome, the
prefix notation does NOT hide the fact that the "+" operator is an-
imported operation on an imported type. As mentioned before,
traceability -an be a significant factor once a system is in the
maintenance phase. With this in mind, a guideline should be adopted
that recommends the avoidance of the USE clause. By normally only
allowing visibility, and not direct visibility, the origin of
imported types and their opprations will be easily recognized due to3he need to ..umpletely qualify all imported entities.

If a project determines that the readability of the infix notation

3-221

EXPERIENCES USING ADA LANGUAGE FEATURES
Operations On Imported Types

warrants the USE clause, all imported entities should still be
completely qualified as part of a continued effort to aid
traceability. Additionally, the effect mf the USE clause can be
localized by including it within individual procedures and functions
rather at the package level.

3.6 STRING MANIPULAT!ThI

During the design phase of the AIM, there was a tendency to get
"caught up" in the concept of typing and string lengths. Initially,
the design used numerous string subtypes. During implementation, it
was found that it is generally unnecessary to put extensive
restrictions on strings. A few general guidelines were identified
and are listed below. Note that each point is a natural progression
from the previous point.

1. The formatting of strings to specific lengths should be deferred
as long as possible.

2. String parameters to procedures and functions should be
unconstrained whenever possible.

3. A string utility package should be implemented to perform many of
the string manipulation functions required by the system.

3.6.1 Formatting Strings

The formatting of strings within string variables involves a number
of possible operations including left or right justification and
blank filling unused character positions. Since strings most often
are left justified within a string variable, either automatically or
by the programmer's choice, it can be advantageous to left justify
all strings and maintain a length variable for each string variable.
This minimal "pre-formatting" clearly defines the string and can
reduce the logic required to copy or move a string (or string slice)
from one string variable to another. In particular, the length
variable eliminates a need to prematurely blank fill trailing
character positions in a string variable. Ultimately, many
intermediate operations can be reduced by following this plan. In
turn, the total program size and the execution time caL be reduced.

3-222

3
EXPERIENCES USING ADA LANGUAGE FEATURES

String Parameters

3 3.6.2 String Parameters

Procedures and functions should be designed to use unconstrained
string parameters whenever possible. The benefits of designing in
this manner include:

* It is easier to use string slices as parameters,

I string manipulations prior to making a call to the procedure or
function can be reduced, and

5 * the procedures and functions become less susceptible to design
and implementation changes.

Unconstrained string parameters actually encourage the use of string
slices and go a long way toward reducing the need for intermediate
string manipulations. If a procedure is designed to accept
unconstrained string parameters, the procedure is generalized and is,
in fact, more transportable than a procedure with constrained string
parameters. Fewer assumptions are made about the strings being used,
thus pr-dr"ing a more stable procedure.

1 3.6.3 A String Utility Package

During the design and implementation of the AIM, it was found that a
string manipulation package could be used to centralize many of the
string functions required by the AIM. Much like the concept of
centralized error handling (described in chapter 5 of this volume), a
string utilities package can reduce the potential for unnecessary
duplication of code. This can make the overall system easier to test
and more dependable.

I
I
I
I
I
I
I

3-22 3I

3-224

n
U
I
U
I

CHAPTER 4

5 ADA TASKING

1 4.1 INTRODUCTION

A task is one of Ada's four primary program units, the others being
subprograms, packages, and generic units. An Ada task is very
similar in form to a package as both are comprised of two textual
parts: a specification that describes its external appearance and an
executable body which defines its internal behavior. The major
difference between the two program units is that a package is a
passive construct providing visibility control whereas a task is
active and provides the capability of parallelism.

It is the intent of this chapter to present a detailed discussion of
some concurrent Ada programming issues that were uncovered during the
implementation of the AIM program. A taxonomy of Ada tasks is first
presented to establish the Ada tasking model's intrinsic Actor/Server
relationship and to introduce the fundamental notion of Ada Tasking
building blocks. Relative to these concepts, the balance of the
chapter presents a discussion regarding: controlling Ada task
start-up, graceful Ada task termination, and some specific details
about our implementation of the AIM program.

n 4.2 A TAXONCMY OF ADA TASKS

Most collections of interacting tasks are organized in such a way
that the individual tasks involved can he classified into functional
group-, where these classifications are based on the functions the
tasks perform relative to the overall system. In particular, from a
given point of reference most Ada tasks can be broadly categorized as
either Servers or Actors [BOO83, 05S83].

Usually, Actor tasks are active constructs which utilize Servers to
accomplish their function, whereas Server tasks are passive
constructs that react to the external requests generated by Actors.
Of course there is nothing prohibiting a Server task from requesting
service(s) from another tasx and thus creating an Actor/Server task.

I

3-225

ADA TASKING
A TAXONOMY OF ADA TASKS

This tfpe of hybrid task is termed a Transducer task [BOO83].

Note: in the context of this chapter the terms Actor, Server, and
Transducer will be used synonymously with Actor task, Server Task,
and Transducer task respectively.

4.2.1 Server Tasks

There are obviously numerous services that Ada tasks could provide:
queue/buffer management, shared resource control, message routing,
asynchronous communications control, etc. Typically, a Server task
providing services of this nature is implemented using an infinite
loop whose body contains a selective wait statement with a terminate
alternative, where the task's entries correspond to the various
services that it provides. A short description of some of the more
common types of Server tasKs follows:

Server Task Description/Characteristics
Type

Agent performs a short-lived job in behalf of another Ada task;
dynamically created; access object pointing to it is often
passed as an entry parameter between a Server/Actor task pair.

Slave body is an infinite loop; continually performs a
well-defined function in behalf of its master task.

Buffer encapsulates a data structure(s); exports entries
(OPEN, PUT, GET, CLOSE) corresponding tc zpp±icable
data structure operations; in~f.,ite loop encapsulating
selective wait with a terminate alternative; typically
links Producer(Actor)/Consumer(Actor) task pair.

Scheduler delays the acceptance of calls on particular entries,
subject to prevailing conditions; infinite loop
encapsulating selective wait with a terminate alternative;
could be used to schedule access to a shared resource.

Synch synchronization task; exports entries (LOCK, UNLOCK) to
support mutual exclusion; infinite loop encapsulating
selective wait with a terminate alternative.

Interrupt traps and handles hardware/software interrupts;
Handler stand alone task; its single entry is associated with

handling a hardware/software interrupt; typically, simple
sequential execution within task body.

Device combination of an Interrupt Handler and Buffer task;
Driver handles device interrupts; internally buffers device's

3-226

i
ADA TASKING
Server Tasks

data %'Ith input and output); infinite loop encapsulating

selective wait with a terminate alternative.

4.2.2 Actor Tasks

Obviously, as a complement to the various types of Servers, there can
be numerous variations of Actor tasks. The general characteristics
of Actors include:

* zero entries declared in its specification; however, sometimes a
* start entry is declared,

* an infinitely executing body, and

* * entry calls to Servers from its body.

A short description of some of the more common types of Actors
i follows:

Actor Task Description/Characteristics
Type

i Customer/ makes entry calls to other (Server) tasks;
Consumer/ requests services from Server tasks; consumes data
Requestor produced by other (Actor) tasks; infinite loop body;

does not export any entries except for perhaps START.

Producer produces data to be processed by other Ada tasks;3 infinite loop producing data packets.

Monitor infinite loop body; no entries other than a possible
initiating one; performs a "watchdog" function.

iI
i
i
I

I
3-227

I

ADA TASKING
Transducer Tasks

4.2.3 Transducer Tasks

Occasionally the complexity of real world problems is such that the
simple Actor/Server tasking paradigm must be enhanced. Typically in
s",ch cases, the function of the Server task requires the services of
of other tasks, and thus, a hybrid Actor/Server or Transducer task is
required. A task of this nature not only accepts entry calls from
Actors, but also invokes the entries of other Servers. Usually, a
Trdnsducer task's body is textually similar to that of a Server in
that it is composed of an infinite loop that encapsulates a selective
wait statement with a terminate alternative. A short description of
some of the more common types of Transducer tasks follows:

Transducer Description/Characteristics
Task Type

Message accepts requests to route messages to other tasks;
Manager calls entries of other tasks to pass along data;

infinite loop encapsulating selective wait with a
terminate alternative.

Secretary not only provides services and schedules activities, but
also calls other Servers to report the results [BUR84J.

3-228

I
U ADA TASKING

ADA TASKING BUILDING BLOCKS

4.3 ADA TASKING BUILDING BLOCKS

Given the above taxonomy of Ada tasks, it is obvious that the Ada
tasking model has an intrinsic Actor/Server task relationship. In
particular, the majority of Ada tasks operate in conjunction with
other tasks, as Actor/Server task pairs, rather than as stand-alone
program units. Relative to the above Ada task taxonomy, consider theI following typical Ada tasking scenarios:

Notational summary:

I Symbol Purpose/Use

Precedes comment text.

Indicates zero or more occurrences of the enclosed object.

Enclosed noun classifies a specific task according to
the Actor/Server/Transducer paradigm.

Indicates tasking interaction.I
Ada Tasking Set Scenarios

Monitor -- Stand-alone

Interrupt Handler -- Stand-alone

I Any Master < ---- > Slave (Server)

Any Server <---.> f Agent (Server) <---- > Customer (Actor)

Producer (Actor) <----> { Buffer (Server) } < ---- > Consumer (Actor)

Hardware Device < ---- > Device Driver (Server) < ---- > Any Actor

Actor

<---> Synch or Scheduler (Server)

Actor

I Actor Server
Secretary or

< ---- > Message Dispatcher <-....>
. (Transducer)

Actor Server

I
I

3-229

I

ADA TASKING
ADA TASKING BUILDING BLOCKS

This Actor/Server task phenomenon leads to the assertion that most
Ada tasks cooperate and function as a set rather than as stand-alone
units and that, furthermore, there exist fundamental "building block"
task sets from which more complicated concurrent sys:ems may be
built.

4.3.1 Canonical Ada Task Sets

The majority of concurrent systems can be developed using a finite
set of fundamental (canonical) Ada task building blocks consisting of
various interactions of Server, Actor, and Transducer tasks. This
finite set of Ada task building blocks consists of the following
canonical forms:

Set Description Notation Example

1. one-to-one: A < ---- > S Customer/Server

S
2. one-to-many: A < --- > S Customer/Multiple Servers

S

A
3. many-to-one: A < ---- > S Producer/Buffer/Consumer

A

A S
4. many-to-many: A < ---- > S

A S

5. one-or-more- Message Sender/
Transducers: A < ---- > T{T} < ---- > S Message Dispatcher/

Messace Receiver

Note: there are some underlying assumptions that have been observed
for the construction of this canonical task set classification: the
tasks' inter-relationships (descriptions) are relative to the Actor
task, an Actor is always associated with a least one Server and vice
versa, Actor/Server tasks occur in alternating pattern pairs, and a
Transducer is textually similar to a Server (has a Server-like body
which makes entry calls to other tasks). Of these canonical tasking
sets, the most widely used include types 1, 3, and 5, from which most
concurrent systems can be built.

3-230

U
ADA TASKING

A Simple Example

3 4.3.2 A Simple Example

This section prcsents the technique for contructing a simple
concurrent system using the aformentioned canonical task sets.

Consider the situation where it is necessary to asynchronously buffer
data that is being entered via a CRT; furthermore, assume that
numerous terminal data consumers may exist. A small concurrent
system of this nature could be constructed as follows:

I Step Canonical Task Set Description

1 Al < ---- > Sl < ---- > CRT Classic Customer/Server.

I Explanation:
The task S1 acts as a filter between the Actor task Al and the
terminal. Sl loops, first reading data from the terminal and
then accepting a GET entry call from Al (or any other Actor
task) to pass the data back.

2 A2 < ---- > S2 < ---- > A3 Classic Pro. ucer/Buffer/Consumer.

Explanation:
This task set is the classic A-S-A configuration where the
Actors are a Producer and Consumer respectively and the Server
is a Buffer task. This task set will asynchronously buffer the
data that is being produced by task A2, and subsequently
consumed by task A3.

3 A12 < ---- > S). < ---- > CRT Merge results of steps 1 and 2.

+---- > S2 < ---- > A3

Explanation:
As the final step in our solution, the A-S task set from step 1
is merged with the A-S-A task set from step 2. Thus, via

merging these task sets together, we have a new task, namely
A12, which incorporates the functions of tasks Al and A2. 7n
this final step, tasK A12 is a Consumer/Producer which first
consumes data from task Sl and then, secondly, produces data for
buffering by task S2.

This technique will be examined further in the context of creating a
fully asynchronous data pipeline as the A:M's underlying data flow
model, but tirst a discussion of task initiation and termination is
in order.

1
I

3-231

I

ADA TASKING
ADA TASK START-UP

4.4 ADA TASK START-UP

Nda's tasking model defines the execution of an Ada task as a
two-phase process: task activation and the normal execution of the
task body's statements. Task activation, which consists of
elaborating tne declarative part, if any, of the task body, occurs
automatically after the elaboration of the declarative part of the
task's parent unit. This activation occurs collectively for every
task object defined within the same declarative part; note that the
implied parent unit's execution is suspended at its initial BEGIN
until all of the tasks in the activation collection have been
completely activated. For each task in an activation collection, the
first statement after its declarative part is executed only after the
conclusion of the activation of every task of the implied collection
of task objects.

4.4.1 Control Of A Starting Task's Execution

Since the start of a task body's execution is, by default cf the
language definition, a well-defined, yet szontaneous event, a
programming mechanism is often needed for controlling the execution
start of all the tasks defined in a system. This task
synchronization mechanism can be implemented by placing the following
simple selective wait statement at the beginning of each task's body:

select
accept START;

or
terminate;

end select;

Of course, a sequenct cf statements representing the task's
initialization can follow either the "accept START;" statement or the
"end select;" line. Furthermore, depending on the nature of a task's
inter-deoendence with others in -*s tasking set, the START entry may
have a tag parameter that is needed tar the proper functioning of the
task. For instance, in the following example, the CONSUMER PRODUCER
task body is that of a task type which must interact with two sibling
tasks that, in addition to itself, will be dynamically created as
part of an object of the record data type WINDOW. In this case, the
C7,NSUMER PRODUCER has no notion of the name of its parent WINDCW
record object and thus of its sibling tasks with which it must
interact, and therefore, the creator of a WINDOW object must pass the
appropriate WINDCW tag into the CONSUTMER PRODUCER task vi: its START
entry (lines 8--10). As a final note, the terminate alternative
Li e 12) of this initial selective wait statement is a programming

safeguard wnich prevents a deadlock situation during t e start-up of
a system's tasks.

3-232

I
ADA TASKING

Control Of A Starting Task's Execution

21 separate (WINDOW MANAGER)
2 task body CONSUMER_PRODUCZR :s
3 MY WINDOW : WINDOW;
4 MY-PACKET : WIND,4 DATA RECORD;
5 WINDOWQUEUEISOPEN : BOOLEAN := TRUE;
6 begin
7 select
8 accept START (WINDOW ID : WINDOW) do
9 MY WINDOW := WINDOWID;

10 end START;
11 or
12 terminate;
13 end select;
14
is -S loop
16 MYWINDOW.QUEUEMANAGER.RZAD DATA FROMQUEUE
17 (MYPACKET, WINDOWQUEUEIS_OPEN);
18
19 exit when not WINDOWQUEUEISOPEN;
20
21 MYWINDOW.WINDOWBUFFER.PUTDATA (MYPACKET);

* 22 end loop;
23 end CONSUMERPRODUCER;

Example 1--Task start-up via an initial selective wait statement.

4.5 ADA TASK TERMINATION

Like task execution, task termination occurs in a two-stage process:
first, a task must complete its execution, and then, secondly, it can
be terminated. A task is said to have completed its execution when
"it has finished the execution of the sequence of statements that
appears after the reserved word BEGIN in the corresponding
body" [DOD83]. There are really three basic scenarios that are
possible when terminating a task named FOO:

I . FOO has no dependent tasks -- FCO terminates when it has
completed its execution,

TCC has dependent tasks ell of which have already
terminated -- FCC terminates when it has completed its execution,
and

3. FCO has dependent tasks that have not terminated -- there are two
subcases underneath this scenario:

3-233

ADA TASKING
ADA TASK TERMINATION

FOO has completed its execution -- FOO terminates when all of

its dependent task are terminated.

FOO's execution has reached an open terminate alternative in
a select statement -- FOO can terminate, if and only if, the
following conditions are satisfied:

- The task (FOO) depends on some maSL ',he execution is
completed.

- Each task that depends on the master considered is either
already terminated or similarly waiting on an open
terminate alternative of a select statement." [DOD83]

When both of these conditions are satisfied FOO becomes
terminated together with all the other tasks which also
depend on the implied master.

4.5.1 Graceful Termination Of Canonical Task Sets

Due to the nature of an Actor/Server task pair, task termination in
this context warrants careful consideration. in particular, a Server
presents no termination problem as it typically has a selective wait
statement with a terminate alternative, and thu.., terminates on its
own: however, due to the infinite loop nature of an Actor task, some
type of programmed termination mechanism is required to assure a
graceful shutdown. Consider the following canonical task set:

Consumer Buffer
A < ---- > S

The Actor (Consumer task) loops infinitely performing its designated
function, whereas the Server (Buffer task) selectively services the
Actor's requests. in this situation it is incumbent on the Server
task to somehow indicate to the Actor when the services will be
discontinued (i.e.--when the Server is ready to terminate).
The easiest technique for accomplishing this shutdown mechanism is
to:

1. export an entry from the Server task to allow an external unit to
trigger its shutdown, and

2. indicate to the Actor task(s), via a BOOLEAN entry call
parameter, that the services are being discontinued,

as is demonstrated in the following Ada code from the AIM program

3-234

I
ADA TASKING

Graceful Termination Of Canonical Task Sets

3 (Examples 2(a) and 2(b)):

I 1 separate (WINDOWMANAGER)
2I 3--4 -- -*

5 -- Abstract : Infinitely loop getting data packets from my window's
6 ---------------- : queue and then forwarding that packet to my window.I 7 -- -*

8 ----
9 task body WINDOWQUEUECONSUMER is

10 MY WINDOW : WINDOW;I I MY PACKET : WINDOW DATA RECORD;
12 WINDOW QUEUEISOPEN : BOOLEAN :- TRUE;
13 begin
14 select
15 accept START (WINDOW ID : WINDOW) do
1E MY WINDOW := WINDOWID;
17 end START;
18 or
19 terminate;
20 end select;
21

i loop
3 MY WINDOW.QUEUE MANAGER.READ DATA FROMQUEUE

24 TMY_PACKET, WINDOWQUEUE_IS_OPEN);

26 exit when not WINDOWQUEUEISOPEN;
27
28 MY WINDOW.WINDOWBUFFER.PUTDATA (MY PACKET);
29 end loop;
30 end WINDOWQUEUECONSUMER;

Example 2(a)--A Simple Consumer Task.

I
I
I
I
I

3-235I

ADA TASKING
Graceful Termination Of Canonical Task Sets

1 with QUEUE;
2 separate (WINDOW MANAGER)
3 task body WINDOWQUEUE MANAGER is
4 package WQ is new QUEUE(WINDOWDATARECORD);
5 AIM NAME : constant NAME := "AIM" & (4..NAME'LAST =>
6 MY PACKET : WINDOW DATA RECORD;
7 NUEL PACKET : WINDOW DATARECORD;
8 WINDOW_QUEUE :S OPEN : BOOLEARN FALSE;
9 begin

10 select
11 accept START;
12 NULLPACKET := (AIM SUPPORT.FROM TERMINAL,
13 WINDOW MANAGER.NULLWINDOW, null);
14 WINDOWQUEUEISOPEN :7 TRUE;
15 or
16 terminate;
17 end select;
18 loop
19 select
20 accept ABORT QUEUE PROCESSING:
21 WINDOWQUEUEISOPEN := FALSE;
22 or
23 accept QUEUEDATATOWINDOW(DATAPACKET : WINDOW DATARECORD;
24 QUEUEISOPEN : out BOOLEAN) do
25 MY PACKET := DATAPACKET;
26 QUEUE IS OPEN := WINDOWQUEUEISOPEN;
27 end QUEUE DATA TO WINDOW;
28 if WINDOW QUEUE I§ OPEN then
29 WQ. INSERTELENENT(MYPACKET);
30 end if;
31 or
32 when not WQ.QUEUE IS EMPTY or else
33 not WINDOW QUEUE IS OPEN =>
34 accept READDATAFROM_QUEUE(DATA PACKET ot WTN-MOW nTA RFCORD-
35 QUEUE IS OPEN out BOOLEAR) do
36 if WINDOW QUEUE IS OPEN then
37 WQ.GETELEMENT(DATAPACKET);
38 else
39 DATA PACKET NULLPACKET;
40 end if;
41 QUEUE IS OPEN WINDOWQUEUEISOPEN;
42 end READ DATAFROM_QUEUE;
43 or
44 terminate;
45 end select;
46 end loop;
47 end WINDOWQUEUE_MANAGER;

Example 2(b)--An Intermediate Buffering Task.

3-236

I!
ADA TASKING

Graceful Termination Of Canonical Task Sets

A few notes are in order for this code:

* the Server has an ABORTQUEUE PROCESSING entry which allows an
external unit to shutdown the-window QUEUE processing (2(b), line
20),

* the semantics of this ABORT QUEUE PROCESSTNG entry is to merely
set an internal flag, WINDOWQUEUEISOPEN, to FALSE (2(b), line
21),

the WINDOW QUEUE IS OPEN flag's value is passed back to the
calling tasks - v-a the Server's read and write entries
(2(b), lines 26,41)

* the Actor is an infinite loop which terminates when the Server
returns the fact that the QUEUE is closed (2(a), line 26),

the Server terminates on its own via the terminate alternative
I (2(b), lines 30, or 44).

4.5.2 Ada Task Termination Concerns

Each Ada task in a system depends on at least one master, where "a
master is a construct that is either a task, a currently executing
block statement or subprogram, or a library package (a package
declared wit.hin another program unit is not a master)." [DOD83]
Furthermore, this dependence on a master is "a direct dependence in
the following two cases:

1. The task designated by a task object that is the object, or a
subcomponent of the object, created by the evaluation of an
allocator depends on the master that elaborates the corresponding
access type definition.

2. The task designated by any other task object depends on the
master whose execution creates the task object."[DOD831

As a consequcnce of dependency case 1, all accessed tasks are
dependent on the program unit which contains their access type
definition rather than the one containing their allocator. In this
vein, it is very easy to develop code containing tasks which are
directly dependent on library packages. Consider the following
example:

3

3-237

ADA TASKING
Ada Task Termination Concerns

1 package WINDOW MANAGER is
2 type WINDOW is private;

22 private
23 task type WINDOW QUEUE CONSUMER is
24 entry START (WINDOW ID : WINDOW);
25 end WINDCO LJL'EUECONSUM ER;
26
27 task type WINDOWQUEUE-BUFFER is
28 entry START;
29 entry RESUME WINDOW OUTPUT;
30 entry PUT DATA(DATA-PACKET : WINDOWDATARECORD);
31 end WINDOWQUEUE BUFFER;
32
33 task type WINDOW QUEUEMANAGER is
34 entry START;
35 entry ABORT QUEUE PROCESSING:
36 entry QUEUE-DATATOWINDOW(DATA PACKET : WINDOW DATA RECORD;

37 QUEUEISOPEN : out BOOLEANT;

38 entry READ DATAFROM QUEUE(DATA PACKET : out WINDOW DATA_RECORD;

39 QUEUE_rS_C.PEN : out BOOLEAN);

40 end WINDOWQUEUEMANAGER;
41
42 type WINDOW BUFFER PTR is access WINDOW QUEUE BUFFER;

43 type WINDOW-CONSUMER PTR is access WINDOW QUEUECONSUMER;

44 type WINDOW MANAGERPTR is access WINDOW QUEUEMANAGER;

59 type WINDOWRECORD;
60 type WINDOW is access WINDOWRECORD;
61
62 type WINDOWRECORD is
63 record
64 WINDOW NAME : NAME;
65 CONTENT : WINDOW ACCESS;
66 NEXT : WINDOW;
67 PREVIOUS : WINDOW;
68 SUSPENDSOUTPUTONFULL : BOOLEAN;
69 IS FULL - BOOLEAN;
70 CURRENT LINE POSITION : NATURAL;
71 VIRTUAL CURRENT LINE : NATURAL;
72 INPUT PXD : PADRECORD;
73 OUTPUT PAD : PADRECORD;
74 BUFFER : WINDOW BUFFER PTR;

75 QUEUE MANAGER : WINDOW MANAGER PTR;

76 QUEUE CONSUMER : WINDOWCONSUMERP'q:
77 end record;
78 end WINDOW MANAGER;

Example 3--Li'brary Package Task Dependency

3-238

I
ADA TASKING

Ada Task Termination Concerns

Since the access types: WINDOW BUFFER PTR, WINDOW CONSUMER PTR, and
WINDOW MANAGER PTR are declared within the specification of the
WINDOW MANAGER package, any accessed tasks created by the allocation
of a WINDOW object will be directly dependent on the WINDOW_MANAGER
package.

Although this is in accord with the normal scoping rules for objects
created by allocators, an interesting transportability issue is left
unresolved by the Ada language definition: are tasks dependent on
library packages required to terminate? Fortunately, every Ada
compiler that the AIM project has used to date chose to terminate
such tasks.

4.6 ADA TASKING AND AIM DATA FLOW

I It is the purpose of this section to use the already established task
building blocks to incrementally reconstruct a skeleton of the AIM's
underlying asynchronous data flow model as a proof of concept.

1 4.6.1 AIM Data Flow Model Skeleton

The AIM's underlying data flow model is essentially an asynchronous
data pipeline. As the term pipeline implies, this model is truly
builk upon small individual pipe segments that were ultimately
dovetailed together. The key segment of the pipeline was the A-S-A
task building block as it is present in no fewer than four places.
During the implementation of the A:M program, the following
ground-level task building blocks were identified and used to
corstruct the underlying data flow model:

Component Type Description

1. A-S-CRT Keyboard Watcher/TTY Server

Explanation:
The TTY Server task acts as a filter between the Keyboard
Watcher task and the user's terminal. It first reads data from
the terminal and then accepts an entry call from the Keyboard
Watcher to pass the data back. This is identical to step 1 of
the previous asynchronous buffer example.

I

3-239

ADA TASKING
AIM Data Flow Model Skeleton

2. A-S-A Keyboard Watcher/Image Buffer/
Image Queue Consumer

Explanation:
This task set is the classic A-S-A configuration where the
Actors are a Producer and Consumer respectively and the Server
is a Buffer task. The Image Buffer task asynchronously buffers
the data that is being produced by the Keyboard Watcher, and
subsequently consumed by the Image Queue Consumer task. This is
identical to step 2 of the previous asynchronous buffer example.
This component is truly the first segment of the AIM's data
pipeline. Note that the Keyboard Watcher task links components
1 and 2 as it functions in a Consumer/Producer capacity. See
Figure 4.1.

Keyboard
Watcher Get TTY Server fe

Task Tasksver

QUCUC.Dat aj o....Iina

ImAQV Image Queue

Buferr

Task

Image Ta5k Set Configuration
Queue

CImr Consumer/Producer ActoTerminal Server

Buffer Sre

Consumer

Figure 4.1--Segment 1 of AIM Data Flow Pipeline.

I
ADA TASKING

AIM Data Flow Model Skeleton

3. A-S-A Image Queue Producer/window Queue Manager/
Window Queue Consumer

3 Explanation:
This task set is also a classic A-S-A configuration where the
Actors are a Producer and Consumer respectively and the Server
is a Buffer task. It is the second segment in the data
pipeline. The Window Queue Manager task will asynchronously
buffer the data that is being produced by the Image Queue
Producer, and subsequently consumed by the Window Queue Consumer
task. Note that in the final construction of the entire data
flow pipeline, the Image Queue Consumer (of component 2) and the
Image Queue Producer tasks will be merged into one Actor task
functioning in a Consumer/Producer capacity. See Figure 4.2.

Producer3 Task
Task Set Configuration

Queue.DataTo-WindowI Window Oueue

Pr oducer Window Wno uv

BufrManager
I

BufferTask

Consumer () Read.Data-rom-Queue

Window
Queue

Consumer

Task

Figure 4.2--Segment 2 of AIM Data Flow Pipeline.

3-241

ADA TASKING
AIM Data Flow Model Skeleton

4. A-S Window Queue Producer/Window Buffer

Explanation:
This is the third component of the data pipeline. It is a
Actor/Server task pair. The Window Queue Prcducer task pushes
data packets at the Window Buffer task; subsequently, the Window
Buffer task will accept these data packets assuming the internal
AIM window with which it is associated is not full. Note that
in the final construction of the entire data flow pipeline, the
Window Queue Consumer (of component 3) and the Window Queue
Producer task will be merged into one Actor task functioning in
a Consumer/Producer capacity. See Figure 4.3.

Task Set Configuration

Producer

I
Buffer E

Queue
Producer

Task

Put-.Data

Window

Buffer

Task

Figure 4.3--Segment 3 of AIM Data Flow Pipeline.

3-242

I
ADA TASKING

AIM Data Flow Model Skelet-n

1 5. A-S Window Buffer/Synchronization

Explanation:
This Actor/Server task pair implements the AIM's system
synchronization technique. It assures mutually exclusive access
to the AIM's internal data structures. See Figure 4.4.I

Task Set Contiguration

Customer Aco

3Snch ty®

I
I
I,

Window3 Buffer
Task

ILock () Unlock

3 Synchronize

Task

i Figure 4.4--AIM System Synchronization Technique.

3
I

3-24 3

I

ADA TASKING
AIM Data Flow Model Skeleton

6. A-S Window Buffer/Script Handler

Explanation:
This Actor/Server task pair implements the AIM's Script file
processing. The Script Handler task has entries for starting
and stopping the processing of an AIM command file. This STOP
entry allows for an immediate break-in and abort of the script
file processing by the user. See Figure 4.5.

Task Set Configuration

CUstomer

Data Router

Windo-

Buffer

Task

Start .Scr ipt.Proces sing

Script
Hajndler

T ask

~I

Figure 4.5--AIM Script File Handler.

3-244

ADA TASKING
I AIM Data Flow Model Skeleton

7. A-S-A WriteToWindow/Buffer/ReadFromProcess

Explanation:
This task set is also a classic A-S-A configuration /here the
Actors are a Producer and Consumer respectively and the Server
is a Buffer tas:. It is the fourth segment in the data
pipeline. The Buffer task will asynchronously buffer the data
that is being produced by the Read From Process task. The
Write Tc Window task consumes the process output from the buffer
and pushes it at the Window Queue Manager task of component 3.
STask Set Configuration

n Consumer

3Buffer Sre

Producer EI
Write

To

Ts()

" One Line
~Text Buffer

1 BufferIThask
(Put)

Pead
From

Proc.ess

I Figure 4.6--Segment 4 of AIM Data Flow Pipeline.

-2
-245

mI i N mmmm h mm m

ADA TASKING
ATM Data Flow Model Skeleton

8. A-S-A ReadFromProcess/Process Buffer/Process Watcher

Explanation:
This task set is a!F- a classic A-S-A configuration wheie tne
Actors are a Consumer and Producer respectively and the Server
is a Buffer task. It is the fifth segment in the data pipeline.
The Process Buffer task will asynchronously buffer the data that
is being produced by an APSE process, and thus the Process
Watcher task. The Read From Process task consumes the data
produced by an APSE process as -needed and pushes it at the
Buffer task of component 7. Note that the ReadFromProcess
task of this component is the exact same one as in component 7.
See Figure 4.7.

Read
From

Process
Task

Task Set Configuration Process

Consumer ED Task

Buffer -*)rEnqueue

Procs
Producer

Watcher

() Got Process Output

Process

Figure 4.7--Segment 5 of AIM Data Flow Pipeline.

3-24j.

ADA TASKING
AIM "L az Modzj S!'-J~etn

3 A skeleton of the entire AIM data flow model appears in Figure 4.8.

Keyboard --3 aleher Ge 11Y servZIr 0SO
I askIas

BufferI Task

CaW ns" 4 " a 1r rDuy

tevTaskka

IConeiswem/PoductPrm
Put..Data Scvu t v Oum "a

Buffer?

Task Buafk

Scrvt Ot Process

U Figure 4.8--AIM Data Flow Model

3 -:247.

ADA TASKING
AIM Data Flow Model Skeleton

A few general notes about the AIM implementation are in order:

In the actual implementation, various subprograms were used as
intermediate steps between the tasks as presented in Figure 8.

The task set comprised of the Window Queue Manager, Window Queue
Consumer/Producer, and the Window Buffer tasks, as well as that
comprised of the Write To Window, Buffer, and Lead From Process
tasks, are dynamically created for every window in-the AIM
system.

The interface to a window's Window Queue Manager task is via a
subprogram defined in the WINDOW MANAGER package; furthermore,
this interface uses th-3 (passed in) WINDOW tag to call the
appropriate window's Queue Manager Task.

4.7 CONCLUSION

A taxonomy of Ada tasks was presented in order to establish the
notion of canonical task sets and to expose the intrinsic
Actor/Server task relationship of the Ada tasking model. Following
this common thread, the issues of task initiation, interaction, and

-drarnat i e ceson-a- Lastly, as a proof of the Ada tasking
building block concept, a skeleton of the AIM's underlying data flow
model was incrementally re-constructed using application specific
clones of the previously established tasking building blocks.

There are numerous conclusions that may be drawn from these
experiences:

* Most Ada tasks can be broadly categorized as either Servers or
Actors.

* Most Ada tasks cooperate and function as a set rather than as
stand-alone program units.

" The majority of concurrent systems can be developed using a
finite set of fundamental (canonical) Ada task building blocks
consisting of various interactions of Se- yr, Actor, and
Transducer tasks.

* Actor/Server task pairs occur in alternating patterns
(A-S-A-S...)

A programming mechanism is often needed for controlling the
execution start of all the tasks defined in a task set;
furthermore, depending on the nature of a task's inter-dependence
with others in its tasking set, this START entrl may require a

3-248

I
3 ADA TASKING

CONCLUSION

3 tag parameter for the proper functioning of the task.

*Due to the infinite loop nature of an Actor task, some type of
programmed termination mechanism is required to assure a graceful
shutdown; therefore, it is incumbent on a Server to trigger the
termination of its associated Actors.

* A complex concurrent system can be easily built by:

a. enumerating the fundamental task sets involved,

3 b. identifying the overlapping components of the fundamental
task sets involved, and lastly,

3 c. dovetailing all the task sets together.

* The programming technique of encapsulating a task(s) within i
package and then exporting a set of procedural interfaces which
parallels its entries is quite effective; furthermore, as an
extension to this programming concept, the body of Server task
can be encapsulated within the context of a generic package
providing a parameterized Server task interface.

II
'I
I

i
I
I
I -249

I .~,(- j.

I
U
I

ICHAPTER 5

EXCEPTIONS AND ERROR PROCESSING

g 5.1 INTRODUCTION

Ada's exception handling capabilities have been both lauded and
condemned. Raising an exception has been called everything from "a
disciplined way of coordinating actions on differenL levels" :GO75]

-to "dangerous" [HOAS]. Others regard exceptions as a necessary
evil; a "user beware" feature of the language. Many Ada proponents
feel that the exception feature, when used carefully, can be a
valuable mechanism for graceful error handling and program control.

Exceptions are important in the development of large Ada programs,
not only at the implementation level, but also at the design level.
Exceptions can serve as communication tools between procedures and
packages; therefore, they become an interface issue.

The AIM project illuminated some of the problems associated with
exceptions in the design stages of a project. Unlike data structures
and procedures, axceptions do not easily "fall out" of
Object-Oriented Design. In fact, significant effort was required to
keep track of exceptions, where they could be raised, and where they
were handled. The fact that exceptions may be used for purposes
other than error handling added to the confusion. Exception
propagation was found to require extreme care to avoid transferring
contro to the wrong handler. We experimented with both local andcentral error handling, finding merits and faults in both approaches.

3 5.2 ERROR HANDLING TECHNIQUES

Error detection and recovery for interactive systems is rather
nebulous at the design methodology level. Judging from recent
literature on software engineering and design, there are numerous
techniques for identifying data structures and refining algorithms,
while errors are left to be detected and handled almost at the whim
of the software designer.

II
3-251

nTIONS AND ERROR PROCESSING
,R HANDLING TECHNIQUES

Object-Oriented Design, the methodology employea oy the AIM design
team, places heavy emphasis on discerning real-world objects which
are later abstracted into data structures and encapsulated into
packages. The actions performed upon these objects become the
procedures and functions which define how the data structures are
related and how the system works. The methodology, however, does not
address how to design what happens when the system does NOT work.
Perhaps this deficiency is the fault of the problem definition;
however, the methodology does not encourage thought along these
lines. (A thorough study of the Object-Oriented Design methodology
can be found in chapter 2 of this volume.)

The apparent neglect of error handling in design methodologies is
ironic, in light of its importance to the actual performance of the
system. According to [PER83], error checking code comprises greater
than half of all code in an interactive system, since ".. there are
usually many wayQ that things can go wrong and only one way in which
they can go right". It is incongruous to design half of a system
very methodically and formally, only to "ad-hoc" the other half.
This approach is made likely, however, by the lack of support in
current design methodologies for error handling. Error detection is
often relegated to the ranks of 'implementation detail' rather than
'design issue'. Error recovery then becomes more of an afterthought
than a design criterion.

In spite of the lack of formal definition and design techniques,
error handling can be divided into two approaches: in-line and
centralized error handling.

5.2.1 In-line Error Handling

Error handling is most easily performed at the place of the error
detection. This approach, however, encourages inconsistent error
handling and possibly duplication of code. Each error is handled
separately, making error message standardization difficult and system
responses variable. Similar errors may not be handled similarly,
especially in large systems which require a group of software
engineers to design. Engineers will usually develop error handling
in their own style, and standardizing this effort requires a
phenomenal feat of coordination. Following is a simple example of
in-line error handling:

3-252

EXCEPTIONS AND ERROR PROCESSING
In-line Error Handling

I procedure DOSTUFF is

NO DATA : boolean;
INPUTERROR : boolean;

begin

13 if'INPUT ERROR then
text io.put (SOMEDEVICE,"You goofed, try again!");

elsif NO DATA then
text_io.put ("Enter some data'");

else
DO MORESTUFF;

end Tf;
xid DO STU1FF;

I Example 5.1

While this approach is simple to code, the decentralized error
handling can lead to programming bugs. In the above example, our
programmer has left out the "SOME DEVICE" parameter in the second
TEXTIO.PUT, which means that the second message will probably be
written to the wrong file or device. Even trivial errors such as3this one take valuable time to debug.

In-line error handling also makes it difficult to vector or defer the
handling of an error to another scope level. For example, a
low-level subprogram could detect a serious error which must be
handled by a driver subprogram. If the low-level subprogram was not
called directly by the driver subprogram, the flow of program control
may need to "rise throuqh" (return through the calling chain) several
scope levels until the appropriate level is reached. This means that
error checks must be at each scope level to allow control to return
to the higher level routine. Each routine along the path of the3 error detection must contain code to handle or vector the error.

In general, the maintainability of code with in-line error handling
is also reduced, since changes in the system are likely to cause
changes in the error handling and recovery. If the error code is
widely dispersed throughout the system, changes could lead to
confusion, bugs, and fractured code.

I
I
I
I

3-253I

EXCEPTIONS AND ERROR PROCESSING
Centralized Error Handling

5.2.2 Centralized Error Handling

An improvement over the in-line 'ad-hoc' approach is to centralize
error handling to one routine or a series of routines. This approach
serves to consolidate code and make error handling more consistent.
Diagnostics are made more difficult, however, because the error
routine must have a parameter for every data type needed for error
handling. For example, a low-level parsing routine which detects an
error in an identifier could call the error routine to handle
"invalid identifier", but in order for the error routine to nctify
the user which identifier is in error, the error routine must know
the representation of an identifier. This means additionally that
the rest of the code must 'know' a lot about the error routine and
what parameters it expects. Vectoring to another level for error
handling is still difficult, even with a centralized routine. The
centralized routine will always return to its point of call, so once
an error is handled in a low-level routine, returning to a higher
scope level must be accomplished in the same manner described above
for in-line error handling. Example 5.2 details an example of
centralized error handling:

3-254

I
EXCEPTIONO AND EtROR PROCESSING

CentralizedErr Handlinq

5 package ERRORPACKAGE is

type ERRORENUM is (INVALIDINPUT, NO-DATA, OTHER_ERRORS);

procedure ERROR (ERRORNAME : in ERROR ENUM);

end" ERROR PACKAGE;i
with text io;
package body ERRORPACKAGE is

MESSAGE : string(l..24);

3 procedure ERROR (ERRORNAME : ERRORENUM) is

begin

case ERROR__NAME is

when INVALID INPUT => MESSAGE "You goofed! Try again. ";

when NODATA => MESSAGE := "Enter some data, please.";

end case;

text_io.put (MESSAGE);
end ERROR;

end ERROR PACKAGE;

I with ERROR PACKAGE;
procedure DO_STUFF is

5 NO DATA : boolean;
INPUTERROR : boolean;

3 begin

if INPUT ERROR then
ERROR PACKAGE.ERROR(ERRORPACKAGE. INVALID INPUT);

elsif NO DATA then
ERROR PACKAGE. ERROR(ERRORPACKAGE. NODATA);

else
DO MORE STUFF;

end -if;

end DO_S-TFF;

i Example 5.2

i
I

3-2 55I

EXCEPTIONS AND ERROR PROCESSING
ERROR HANDLING USING EXCEPTIONS

5.3 ERROR HAND' ,G USING EXCEPTIONS

The exception h dling capabilities of the Ada language simplify both
in-line and central error handling. The exception handler part of a
block is clearly identifiable and obvious. Each subprogram must
declare or have visibility to the exceptions that it is allowed to
raise or propagate. This forces a software designer to explicitly
define the paths of error handling, rather than rely on estimation to
determine error paths. When properly handled, exception propagation
allows an error to be vectored to the appropriate level. Exception
handling can make error detection and recovery more visible,
organized, and more consistent. The concept can be used to more
easily design error handling into interactive systems.

5.3.1 In-line Error Handling With Exceptions

Errors can be handled locally quite easily using exceptions. Rather
than hiding the error handling code in-line, it can be separated into
an exception handler at the end of the code block. Exceptions can be
used to correct errors and retry operations or to pass control back
up to a higher scope level. Similar errors can simply raise the same
exception and propagate to the same handler. This allows uniform,
consistent error handling, even if errors are not vectored to a
central location. Care must still be taken to ensure uniformity of
error messages and diagnostics. However, the exception feature makes
this code much more visible and easy to locate, simplifying system
changes. Compare the following example to Example 5.1 above:

3-256

I
EXCEPTIONS AND ERROR PROCESSING

in-line Ercor Handling W01 4. h x C

I with TEXT rO;
procedure-DO_STUFF is

I NO DATA : boolean;
INPUT ERROR : boolean;
INVALID INPUT : exception;
NODATA ERROR exception;

begin

if INPUT ERROR then
raise fINVALID INPUT;

elsif NODATA then
raise NODATAERROR;

else DOMORESTUFF;
end if;

exception
when INVALIDINPUT =>

TEXT IO.PUT ("You goofed, try again! ");
DO STUFF;

when NO DATA ERROR =>
TEXT IO.PUT ("Enter some data, please");
DO_STUFF;

end;

3 Example 5.3

.n the above example, the procedure can generate an error message and
retry the operation (by the call to DOSTUFF in the exception
handler). Error messages are in the same proximity and are therefore
easier to standardize and maintain.

3a Handling Using Exceptions

Centralized error handling was the error handling method chosen for
the AIM design. It was found that exceptions can encourage
centralized error handling due to their propagation capability. Even
so, the centralized technique basically remains the same: when a
subprogram detects an error, an exception i. raised. The handler for
this exception contains a call to a central error-handling routine.
Exceptions can be used throughout the code to generate calls to the
error package. However, an exception cannot propagate directly to
the error routines unless the error routine is part of the main
program (or at least is part of the calling sequence for each
routine). Resuming an abandoned procedure is difficult from a

U
I

3-25?I

EXCEPTIONS AND ERROR PROCESSING
Centralized Error Handling Using Exceptions

centralized error routine; however, using exceptions, the subprogram
can be re-called from the exception handler after the call to the
error routine. Following is the same problem as Example 5.2 above,
usinq exceptions:

with TEXT 10;

package ERRORPACKAGE is

type ERRORENUM is (INVALIDINPUT, NODATA, OTIERERRORS):

procedure ERROR (ERROR NAME : in ERRORENUM);

end ERRORPACKAGE;

package body ERRORPACKAGE is

MESSAGE : string(l..24);

procedure ERROR (ERROR NAME in ERROR ENUM is

begin

case ERROR NAME is

whe n INVALID INPUT => MESSAGE := "You goofed! Try again. ";
when NO DATA => MESSAGE := "Enter some data, please.";
when OTHERS => MESSAGE := "See operator.

end case:

TEXTIO.PUT (Message);

end ERROR;
end ERRORPACKAGE;

'-258

I
EXCEPTIONS AND ERROR PROCESSING

Centralized Error Handling Using Exceptions

* with ERROR PACKAGE;
procedure DO_-STUFF is

3 NO DATA : boolean;
INPUT ERROR : boolean;
INVALID DATA : exception;3 NODATAERROR: exception;

begin

if INPUT ERROR then

raise INVALIDDATA;

elsif NO DATA then
raise NO_DATAERROR;

else
DO MORE STJFF;

end -f;

exception
when INVALIDDATA => ERROR PACKAGE.ERROR

- (ERROR PACKAGE.INVALID INPUT);
when NO DATAERROR => ERROR PACKAGE.ERROR (ERRORPACKAGE.NODATA);3 end DO_STUFF; ...

Example 5.4

In the example above, all the error handling data structures and

types can be encapsulated into the package ERROR PACKAGE. This
scheme is amenable to changes, since all the interacting structures
are in the same place. The design of the centralized error handling
still looks similar to Example 5.2, however, in that the actual
resolution of the error is accomplished by a call to procedure ERROR.

During the AIM design, an interesting problem occurred with
Object-Oriented Design and exception handling. Since the methodology
keys on grouping data structures with the procedures and functions
which act upon them, the procedures all belonged at the same
hierarchy level. The resulting design tended to produce a "flat"
structured system; most packages and procedures were declared at the
same scope level. Therefore, when routines from one package called
routines from another package, exception handling became a quandary:
where did the handler belong? Exceptions declared in package A could
easily be propagated through routines from package B, which meant
that package B routines had visibility to package A's exceptions.
Ultimately, this potential problem was solved by more clearly
defining the exceptions and identifying their causes.

3U
3-259!

EXCEPTIONS AND ERROR PROCESSING
Handling The Standard Exceptions

5.3.3 Handling The Standard Exceptions

Ada provides several standard exceptions which can serve as run-time
checks in an interactive system. These exceptions, such as
CONSTRAINT ERROR, are zd by the system, but may be handled in the
Ada program. Therefore, instead of the program failing when an
invalid data item is entered, the program can trap this error and
handle it. If the exception is not handled locally, it will
propagate through the calling sequence. The exception must be
handled at some point in the calling sequence, or the program will
fail. We took advantage of the standard exceptions in the AIM
design, treating them like any other exceptions. However, we found
that extra care must be taken when using these exceptions, because
they were not explicitly declared in our packages. Since these
exceptions can be raised from almost anywhere (such as when an array
index goes out of range), the handler for a standard exception could
be invoked for the wrong reason, creating debugging confusion.

5.4 DESIGNING EXCEPTIONS INTO ADA PROGRAMS

Determining that a procedure needs to be able :o raise an exception
is not difficult. Designing the exception handling so that correct
propagation occurs IS difficult. Currently, Ltere is no formal
technique for developing exceptions and associating them with the
correct exception handlers. The AIM design demonstrated the
confusion that can result from attempting to organize exception
handling; to alleviate the chaos, we developed a cross-reference
mechanism for exception propagation tracking.

5.4.1 Propagating Exceptions

Exceptions can be propagated through a system both explicitly and
implicitly. Explicit propagation occurs when exception handlers are
provided throughout the propagation path of the exception and each
handler re-raises the exception as part of its processing. Implicit
propagation occurs when an exception is raised and there is no
exception handler within that local block or frame that explicitly
traps the exception. The exception is propagated through its
propagation path to the innermost frame which does have an exception
handler that explicitly traps the exception.

Although providing explicit propagation may create an excessive
aiioun-, of code, it can provide a visible indication of the exceptions
expected to be raised within or propagated through each block within
the system. Note that the WHEN OTHERS clause of an exception handler
must be classified as providing explicit propagation even though the
exception is not uniquely identified in the exception handler. This
is because the propagation uf the exception is handled explicitly by
the program and not implicitly by the runtime package.

3-260

1
EXCEPTIONS AND ERROR PROCESSING

Propagating Exceptions

The disadvantage of implicit exception propagation is that, without a
source code level debugger, it is very difficult to trace the origin
of an exception. This makes testing and maintenance very difficult
and time-consuming. The advantage of implicit exception propagation
is two-fold. The size of the executable image is reduced and the
overall speed of execution may be increased since the runtime package
handles exception propagation automatically. Of course, this assumes
that many of the exception handlers would do nothing more than
re-raise exceptions.

5.4.2 Exception Visibility

A prime consideration when designing with exceptions is the sensitive
rule of exception definition and scope. Once an exception is raised,
control is transferred to the innermost enclosing frame that has an
exception handler. If at any level along a propagation path the
exception is not declared or the exception name is not visible, the
exception name becomes "anonymous" at that point: the program knows
an exception has been raised, but does not- know the name of the
exception. The exception can then be handled only by an OTHERS
clause in an exception handler. However, if there is no OTHERS
clause in the main level exception handler, the program will fail.
Consider the following example:

3
I
I,

I
U
I
I

! 3-261

U l i lI l i l i

EXCEPTIONS .ND ERROR PROCESSING
Exception Visibility

with A, B, ERROR;

procedure MAIN is

begin

A.PROC A;

exception
when ERROR.OOPS => A.START OVER;
when others => A.ABORTPROGRAM;
end MAIN;

package A is

procedure PROC A is

begin -- Procedure A.PROCA

B.PROC B;

exception
when others => raise;
end PROC_A;

end A;

with ERROR;
package B is

procedure PROCB is

begin

raise ERROR.OOPS;

end PROC B;

end B;

Example 5.5

3-262

EXCEPTIONS AND ERROR PROCESSING
Exception Visibility

Notice the procedure MAIN and package B have made the package ERROR
visible. If procedure PROC B in package B raises the exception
ERROR.QOPS, the exception will propagate back up to the procedure
MAIN. However, since the package ERROR is not visible to package A,
the exception ERROR.OOPS will become "anonymous" as it propagates
through procedure PROC A in package A. This will force the exception
to be handled by the OTHERS clause of procedure MAIN instead of the
explicit handler for the exception ERROR.OOPS. It is now obvious
that extreme care must be taken to determine any and all paths forexception propagation.

3 5.4.3 The Cross-Reference Matrix

The AIM design concentrated mainly on developing the packages and
procedures specified by the Object-Oriented Design. Exceptions were
a design consideration at the procedure level from the very
beginning; exceptions were dutifully outlined in each subprogram
specification and declared in the corresponding packages. However,
we found that keeping track of which routine could raise which
exception was impossible at the design level, because declaring
exceptions at the procedure level requires partial implementation of

the routine. Therefore, we had to rely on human memory in many cases
to detail the exception in the abstract for the routine. The design
code for each subprogram, however, did not reflect the exceptions.
If an exception was declared at the package level, it was impossible
to tell from the package specification which routines in the package
could raise the exception without reading through every subprogram
specification in the package.

3 After some consternation and frustration trying, to keep up with
exception declaration and handler location, we experimented with an
exception "cross-reference" matrix for the AIM. Each exception was
associated with the routines that could raise it and the places where
it could be handled. For example:

3 Exception Raised Handled

NOSUCHIMAGE IM.GETNAME IM.GET IMAGE
IM.GETIMAGE CI.PERFORM COMMAND3 VM.ASSOCIATE CI.PERFORMCOMMAND

NO SUCHPROGRAM PM.GET PROGRAM PM.NEXT PROGRAM
PM.SUSPENDAPSE PROGRAM CI.PERFORMCOMMAND

KEY
IM - IMAGE MANAGER
VM - VIEWPORT MANAGER
PM - PROGRAM MANAGER

I

i 3-263

EXCEPTIONS AND ERROR PROCESSING
The Cross-Reference Matrix

The development of this matrix led to several valuable discoveries
about our design:

1. There were several routines which raised the same exception but
required different handling.

In several cases, procedures from different packages used the
same exception name for different purposes. Especially confusing
were the instances of routines needing local handlers with the
same name as a "centralized" handler. Propagation sequences were
hard to define when the origin of the exception was not clear.

2. There were several exceptions declared in packages but never
raised in any subprograms.

The size of the AIM system design was a factor in this oversight.
The structure of the design document did not readily lend itself
to checking the completion of exception handling. In some cases,
the nature of the package warranted the exception declaration,
but it was not clear which subprogram would ra.se or handle it.

3. The propagation sequences of some exceptions were not easily
definable.

When one package WITHs several others, it is very difficult to
predict ALL of the calling sequences possible for ALL of the
routines. However, to attain correct exception propagation, tne
exceptions must at least be visible at each level. Otherwise,
the aforementioned "anonymous" exception problem occurs.

4. Our central error handling scheme required every other package to
WITH the error package, creating some potential cyclic dependency
problems.

The error package, in some instances, needed to call procedures
in other packages to obtain diagnostic information. The error
package is WITHed by all the other packages to provide
centralized error handling. This created some cyclic dependency
problems (e.g. the error package WITHed a package which in turn
WITHed the error package, causing the AIM compilation to fail
under the NYU/ AdaEd compiler. This was a compiler problem, but
we could not compile our code without remedying the situation.)
Our solution was to precede the package bodies by "WITH
ERROR PACKAGE" and to compile separately the routines of the
ERRORPACKAGE that needed to WITH other packages. Eventually
(because of our access to other Ada compilers), only the package
bodies WITHed the ERROR package. Additionally, only the ERROR
package body WITHed other packages. This technique, although
somewhat confusing to novice Ada developers, eliminated the

3-264

I
EXCEPTIONS AND ERROR PROCESSING

The Cross-Reference Matrix

I cyclic dependency problem.

5. Exceptions were not used in a consistent manner across the
* design.

The cross-referenre matrix began as an attempt to map all
exceptions to the errors that were found. The AIM design,
however, uses exceptions for program control also, not just for
error handling. These exceptions were generally handled locally
and needed to be separated from the error flag exceptions. We
classified the exceptions into two categories: "local" and
"global" exceptions. Only the global exceptions were part of the
cross reference matrix, since the local exceptions were assumed
to be handled locally.

Developing the exception cross-reference matrix was an illustrative
exercise. Maintaining the matrix was important as small design
changes were made. The interconnections and relationships among the
packages often 3ffected exception propagation sequences, and any
changes could impact the matrix.

5.5 USING EXCEPTIONS FOR PROGRAM CONTROL

Exceptions anc exception handlers can provide a mechanism for
controlling program flow. In general, exceptions affect program flow
by providing an implicit GOTO to the end of the current block. This
action is INESCAPABLE and forms the basis for using exceptions to
control program flow. While deciding whether or not to incorporate
exceptions as part of the program control methodology for a system,
the designer must consider how and when exceptional conditions will
be detected. Additionally, the side effects of using exceptions must
be considered.

5.5.1 Detecting Expected Exceptional Conditions

In [BOO83], Booch states, "... we should not use exceptions to
provide some sort of implicit GOTO facility. Rather, when modelina
solutions, we should try to recognize the possible error states of
our objects and algorithms and explicitly use exceptions only to plan

* for their resolution".

Booch limits his use of exceptions only to error handling. However,
he neglects one of the other purposes of exception handling:
detecting expected exceptional conditions. In (G0075], John
Goodenough maintains that exceptions are needed for three basic
purposes:

I
I
U

3-265

I

EXCEPTIONS AND ERROR PROCESSING
Detecting Expected Exceptional Conditions

a. To signify operation failure,

b. To classify a valid result of an operation so the result is used
appropriately,

c. To monitor a computation's intermediate results or to request
additional information.

Exceptions can be useful not only for error handling and recovery,
but also for simple program control in exceptional situations.
Instead of setting and checking a variable to exit a loop, the
procedure can raise an exception which terminates the loop and allows
the programmer to easily do post-processing. Almost all of these
exceptions are handled strictly locally. For example, a generic
stack package could use the exception CONSTRAINT ERROR to recognize
stack overflow and underflow. Referring to the specification for a
generic STACK PACKAGE in example 3.2 (where STACK.TOP can range from
0 to the maximum stack size), the implementation of the PUSH
procedure could look like tne following:

package body STACK PACKAGE is

-- procedure PUSH -- This procedure attempts to push another element
onto the stack. If the stack is full, a

-- constraint error occurs. The exception handler will then raise the
-- STACK OVERFLOW exception and pass it to the calling procedure.

procedure PUSH (FRAME : in ELEMENTS;
STACK : in out HELPINFOSTACK) isbegin- -

STACK.TOP :- STACK.TOP + 1; -- constraint error can be raised here
STACK.CONTENTS(STACK.TOP) := FRAME;
exception

when CONSTRAINT ERROR => -- STACK.TOP = SIZE
raise STACK OVERFLOW;

when others >
raise;

end PUSH;

end STACKPACKAGE;

Example 5.6

3-266

EXCEPTIONS AND ERROR PROCESSING
Detecting Expected Exceptional Conditions

This example shows how exceptions can be used for program control by
detecting expected exceptional conditions and acting upon them. Be
aware that CONSTRAINT ERROR would be raised after the evaluation of
the expression "STACK.TOP + 1", but before STACK.TOP is actually
updated. Depending upon the designer's pintof view, the exception
CONSTRAINT ERROR would signify operation failure or classify a valid
result so that the result could be used appropriately. Note,
however- that it is not always immediately obvious as to which
statements in the code actually raise the exception CONSTRAINT ERROR.
This implicit GOTO capability should be clearly documented to -mprove
the maintainability of the code.

5.5.2 Side Effects Of Using Exceptions

Effectively incorporating the use of exceptions into the design of a
system is clearly a difficult task. Once the design is being
implemented, some additional concerns, or side effects, must beaddressed. These side effects include:

the potential for variables having intermediate values when
exceptions are detected,

* the effect that using exceptions has on the testing phase, and

* determining how to use standard exceptions when certain runtime
* checks must be suppressed.

5.5.2.1 Intermediate Values Of Variables

Care must be taken if values of variables are to be used in an
exception handler. Chapter 11, section 6, of tha Ada language
reference manual specifies conditions tindcr which actions may be
performed earlier or later Lhan specified by other rules in thelanguage.

As prescribed by the manual, optimized code MAY NOT create extraneous
exceptions; however, exceptions that are created may be raised at
some point during execution different from that indicated by the
given source code. This may cause some variables to have only
intermediate values or even to be undefined instead of having some
values as implied by the flow of the given source code. In general,
variables which are updated within a block of code where an exception
is raised are the variables which may have intermediate or undefined
values. rf such variables are evaluated for use in an exception
handler, unexpected results may occur. This flexibility provided to
compiler implementors is another reason why code such as the example
stack package should be used with care and tested thoroughly before
release. Without a clearer definition than that provided by the

IU
3-2 67I

EXCEPTIONS AND ERROR PROCESSING
Intermediate Values Of Variables

current version of chapter 11 of the Ada language reference manual,
code such as found in the above stack package may even be system
(compiler implementation) dependent.

5.5.2.2 Experiences While Testing

During the development of the AIM using the Data General ADE and
during rehost onto a DEC VAX 11/785, the source code level debuggers
supplied with each system were used extensively. As exceptions are
frequently used in the AIM to indicate exceptional conditions, the
development team experienced an interesting side effect during the
debugging and testing phases of development.

The debug systems create a breakpoint whenever an exception is
raised. This includes the standard pre-defined exceptions as well as
AIM system defined exceptions. Some heavily used procedures
routinely raise an exception as a method for returning information to
the calling procedure. At times, development team members became
quite agitated at the constant creatin of breakpoints and warning
messages during testing. Although the debuggers provide a mechanism
for overriding the setting of breakpoints when exceptions are raised,
in general this capability must be ignored in order to allow proper
testing and debugging. Otherwise, it is often difficult, if not
impossible, to trace the source of an unexpected exception.

The general consensus of the AIM design ahd implementation team is
that the effects of using exceptions which have a high probability of
occurrence must be examined carefully. One might conclude that an
exception which is raised relatively frequently is not a true
exceptional condition and, therefore, should be handled in a
different manner within the design and implementation of the system.

5.5.2.3 Suppressing Runtime Checks For Errors

A problem associated with using standard pre-defined exceptions for
program control is that one cannot suppress runtime checks related to
those exceptions within the region of code where the exceptions are
used. Consider the previous example of a generic stack package. The
example package will not work if the runtime checks INDEX CHECK and
RANGECHECK are suppressed.

Now consider an example where, due to execution speed requirements,
it is necessary to suppress the runtime checks which can raise the
exception CONSTRAINTERROR. In order to use a package such as the
example stack package, that package must be isolated from the other
compilation units in such a way as to remove it from the scope of any
pragma SUPPRESS statements. To implement this example on a VAX using
the DEC Ada compiler, it was necessary NOT to instantiate the stack
package in the package that contained the pragma SUPPRESSALL. This

3-268

I
EXCEPTIONS AND ERROR PROCESSING

Suppressing Runtime Checks For Errors

level of indirection was necessary to remove the stack package from
the scope of the pragma statement. If the generic stack package had
been instantiated in the package containing the pragma SUPPRESS ALL,
the stack procedures would have fallen within the scope of the pragma
statement. One implication of this solution is that the benefits of
using a generic package are reduced when it must be instantiated in a
package separate from the one where it is actually used. The
separate package adds a logical level of indirection, whether real or
imagined.

5.6 GUIDELINES FOR USING EXCEPTIONS

A natural outgrowth of our experiences is the following list of
guidelines for using exceptions. While some points are
inter-related, and may even overlap in some areas, it is best that
they be listed so as to serve as visible reminders to the design
team. Note that any questions listed should be answered during the
design phase of system development, due to their long range impact on
the system. -

1. Identify System requirements

a. Is overall code size a factor?

b. Is execution speed a factor?

c. Will the pragma SUPPRESS be used?

d. Is maintainability the primary concern?

2. Identify exception usage methodology

a. Will centralized or local error handling be predominant?

3 b. Will exceptions be used to control program flow?

I 3. Keep in mind the side effects of using exceptions

a. Traceability of the origin of each exception

Sb. Scope of visibility of exception names

c. Possible dependency upon compiler implementations for
I reliable values of some variables

I
I

3-2 69I

I
EXCEPTIONS AND ERROR PROCESSING
GUIDELINES FOR USING EXCEPTIONS

d. Impact of frequent exception occurrences during testing

In studying the AIM design, we found exceptions to be a powerful tool
for error handling and for program control in exceptional situations.
Exceptions enhanced local error handling and made error code more
maintainable. We were able to design a centralized error handling
package for the AIM which could be invoked from exception handlers
throughout the system. Since there are no formal techniques for
designing exceptions into Ada programs, the cross-reference matrix
was found to be a useful tool. Finally, as with all the other new
programming features that Ada provides, exceptions must be used with
care to avoid any of their undesireable side effects.

II
I

I

I
I
I
I

3-270 i

I

I
I
I

I CHAPTER 6

3 ENV I RONMENT EXPER I ENCES

6.1 COMPILER EXPERIENCES

This section summarizes some fundamental Ada compiler design and/or
implementation decisions that can directly effect Ada software
development. Categorically, these decisions include the compiler's:

3* Storage Allocation Scheme (Data Representation),

* Underlying Storage Management Scheme,

* Implementation of Tasking, and

* Implementation Dependent Features.

1 6.1.1 Storage Allocation Scheme

The storage allocation scheme instrumented by a code generator for an
Ada compiler is quite important as it has a direct correlation to the
efficiency of the executable code produced. For example, the DG ADE
2.20 Ada compiler allocates one 32-bit word for every scalar object:
BOCLEAN, CHARACTER, INTEGER, etc. When this simplistic storage
allocation paradigm is extended from scalar objects to composite data
structures (arrays and records), the inefficient storage utilization
is greatly magnified. This inefficiency also carries over into
slower execution time when these (internally larger) composite data
structures have to be frequently copied due to: simole assignments,

aggregate assignments, parameter passing, and array slices.

I It is important to consider the following data representation issues
when evaluating an Ada compiler:

3
I
I

I 3-271

U .

ENVIRONMENT EXPERIENCES
Storage Allocation Scheme

* Mapping of scalar data types,

* Mapping of composite data types (records, arrays),

* Representation of discriminant records, and

* Implementation of unconstrained array types (does the compiler
allocate the maximum space ever needed).

6.1.2 Storage Management Scheme

The Ada language seems to have two different storage management

schemes in mind, either:

1. an automatic dynamic storage reclamation mechanism, or

2. a user controlled storage management capabi'ity directly
supported by the generic Ada procedure, UNCHECKEDDEALLOCATION.

Most Ada compiler run-time implementations will support the latter
storage management scheme; however, the Ada run-time models for use
in embedded systems will more than likely support both of these
scenarios.

No matter which scenario is supported by the Ada run-time model,

certain issues must be considered:

* is there any "hidden" dynamic storage allocation (aggregates,
slices),

* what type of stack management scheme is instrumented (primary
stack, secondary stack)

* how is a task's stack-heap allocated, managed, and subse.uently
deallocated,

* from where is dynamic storagc allocated when a procedure, on the
dynamic call chain of an Ada task, creates a local object via the
evaluation of an allocator, and

* what method of storage management is used for handling access
type collections.

3-272

I

ENVIRONMENT EXPERIENCES
Implementation Of Tasking

S6.1.3 Implementation Of Tasking

There are numerous implementation issues that must be addressed in

the realm of Ada tasking:

Storage management scheme for task's stack-heap space - An Ada
run-time model must support a storage management scheme powerful
enough to support Ada tasking. Specifically, Ada tasks must have
their own run-time stack for local variables as well as frames
corresponding to subprograms invocation. An Ada run-time model
must support the allocation, access management, and deallocation
of these task stacks.

* Handling of Asynchronous Input/Output - An Ada compiler's
implementation of asynchronous input/output from withina
multi-tasking application can be an important concern. For
instance, the DG Ada compiler utilizes operating system (server)
tasks to support asynchronous input and the DEC Ada compiler uses
Asynchronous Traps (AST's). In this comparison, the DG Ada
compiler implementation is restricted to having 32 simultaneous
Ada tasks performing input operations whereas the DEC Ada

* compiler has no such restriction.

* Accuracy of the real-time clock and the DELAY statement - The
granularity of the real-time clock and the open-ended nature of
the semantics of Ada's DELAY statement are major implementation
concerns of the real-time programming community.

* Method of implementing rendezvous - The underlying

implementation and the relative speed of the Ada rendezvous are
also vital real-time programming concerns.

l 6.1.4 Implementation Dependent Features

Chapter 13 of the Ada LRM [DOD831 enumerates some compiler dependent
features that are suggested, but not required, in the implementation
of a validated Ada compiler. As an Ada compiler matures and its
users' system programming requirements increase, all of these
features will probably have to be implemented. Minimally, every Ada
compiler should support:

* unchecked storage deallocation,

* unchecked type conversLon,

* length clauses, and

3-273

: I
ENVIRONMENT EXPERIENCES
Implementation Dependent Features i

* programming interfaces to other non-Ada languages.

6.2 ENVIRONMENT COMPARISON: AOS/VS/ADE VS VMS

A comparison of the two development environments is given here. The i
purpose is to provide both objective and subjective information
concerning the most used tools in a software development environment.
The tools examined are:

* Compiler

* Linker I
* Debugger

* Program Librarian

* Configuration manager i
* Editor

* Electronic mail system 5
6.2.1 Compiler 3
Both systems have an ANSI standard Ada compiler. This means that
they both pass the ACVC tests and are considered production quality.
In this section the method of compilation, error messages, and
resultant files will be examined. Also, the degree to which the
compiler is integrated into the environment will be explored.

Finally, a table is given showing the objective capabilities of the i
two compilers.

6.2.1.1 Method Of Compilation i
6.2.1.1.1 AOS/VS - The compilation process involves three steps:

1. Parse the entire Ada source file; if any syntax errors are
encountered, the compilation is terminated,

2. assuming no errors from step 1, semantically check each
compilation unit. If any semantic errors are detected,
compilation terminates for that unit, but continues for the
remaining units, and

I
I

3-274 1

i

m
ENVIRONMENT EXPERIENCES

Method Of Compilation

13. generate machine code, in the form of relocatable binary, for
each correct unit, and update the program library accordingly.

I The Ada compiler can be invoked from the command line or executed in
a batch stream. We limited the execution of the compiler to only run
in a batch stream at reduced priority due to the heavy resource
demand the compiler makes on the system. within the batch stream welimited the number of concurrent compiles to 5 (on an MV 10000 with12MByte of memory). This number was reached by trial and error.

I The compiler is invoked via the command

-) ADA filename C filenamel*

where "filename" names the source file(s) that you want to compile.
If no extension is given, the extension ".ADA" is assumed.

3 Command switches of the form:

-) ADA (/switch (-option] 1*

allow the programmer to enable specific features (as described in the
capabilities section below). The switches can be abbreviated to a
certain degree.

6.2.1.1.2 vAX/VMS - The Ada compiler can be invoked from the command
line or executed in a batch stream. We did not limit the execution
to a batch stream since the compiler does not seem to burden the
system quite as much as the DG compiler.

The compiler can be invoked in three ways:

from the command line to compile (an) Ada program(s),

* from the Ada Compilation System (ACS) with the COMPILE command,
and,

* from the ACS with the RECOMPILE command.

To compile from the command line the form is:

$ ADA filename C, filename]*

where "filename" names the sourc- file(s) that you want to compile.3 If no extension is given, the extension ".ADA" is assumed.

Command switches of the form:

3
I

i 3-275

. .. --I- - - .,.. m mm amm m ~ m

ENVIRONMENT EXPERIENCES
Method Of Compilation

$ ADA [/switch [=option]]*

allow the programmer to enable and disable specific features (as
described in the capabilities section below). The switches can be
uniquely abbreviated. These switches only apply to the source files
that they appear with.

The ACS COMPILE command forms the closure of the set of units
specified; compiles, from current source files, any unit in the
closure that was revised since last compiled into the current program
library; recompiles any unit in the closure that needs to be made
current. This is a form of minimal recompilation and will be
discussed more later. It is enough to say that this command invokes
the compiler to compile all the source necessary to update the
specified unit. The form of the command is:

ACS> COMPILE unitname [, unitname]

Where the unitname is the Ada program unit (subprogram, package,
task). The librarian makes the association between the unitname and
the file that contains it.

The ACS RECOMPILE command recompiles (makes current) any obsolete
unit that is part of the cl(-.aure of the set of units specified. The
form of the command is:

ACS> RECOMPILE unitname C, unitname 1*

Other than this, the RECOMPILE is similar to the COMPILE command.

6.2.1.2 Error Messages

Each system has a general format for messages. A sample program is
used to demonstrate the error message formats and place of occurence.

6.2.1.2.1 AOS/VS - Since the AOS/VS Ada compiler was run in batch
the error messages are first queried from the batch stream. The
compilation of a sample Ada program could show the following sequence
in the batch stream.

-) ada temp
Command line parsed.
Ada Compiler Rev. 02.20.00.00 6/5/85 at 12:52:11
Reading from :USERI:ATB:AIM:FINALK-ELEASE:DEMO:TEMP.ADA
5 syntax errors
Procedure body TEST_ERxORS has NOT been added to the library.
2 semantic errors
Code generation suppressed
Used 0:00:01 in 0:00:03

3-276

ENVIRONMENT EXPERIENCES
Error Messages

1 From here, one would type out the list file (or edit it) to determine
the actual syntax and semantic errors. There are two types of errors
that can occur: syntax errors and semantic errors. Syntax error
messages are located near the place where they occur. Semantic error
messages are located at the end of the list file.

The general format for either type of message in the list file is as
demonstrated in the following example.

3 1 TYPE mine IS RANGE ;

* Syntax error with input ';' (Line 3, Column 20).
0 v - - - ,g ' (. nP- 1., eThlumn 20) with '+'

,26.2.1.2.2 VAX/VMS - The VAX/VMS Ada compiler can be executed from

the command line. An example output sequence compiling the same3 program as on the AOS/VS above is as follows.

$ ada temp/list temp
1 WITH nothing

..............1
%ADAC-E-INSSEMI, (1) Inserted ";" at end of line

1 3 TYPE mine IS RANGE;
............ .1i...........1
%ADAC-E-IGNOREUNEXP, (1) Unexpected ";" ignored.............. 2I2%ADAC-I-IGNOR.EDECL, (2) Declaration ignored due to syntactic errors within

6 hoodoo();
.......... 1

%ADAC-E-IGNOREPARENS, (1) Empty parentheses ignored

7 END test-errors;
%ADAC-F-TERMSYNTAX, Terminating compilation due to syntax error(s)
%ADAC-F-ENDABORT, Ada compilation aborted

The line number, the text line, and the error messages are given.
Also, delineation is made between (I)nformation, (W)arning, (E)rror,3 and (F)atal problems.

3 TYPE mine IS RANGE
........ 1..................2
%ADAC-E-IGNOREUNEXP, (2) Unexpected ";" ignored
%ADAC-I-IGNOREDECL, (1) Declaration ignored due to syntactic

errors within it

I
3-277I

ENVIRONMENT EXPERIENCES
Resultant Files

6.2.1.3 Resultant Files

Both systems generate resultant files containing the needed
information to support the program library, linker, debugger and
other internal functions. Overall, the functioning is very similar.

6.2.1.3.1 AOS/VS - From the compiler the following files are written
to the directory containing the target Ada program library. These
files are created if the compile completes successfully, only the
.LST file is created if the compile does not complete successfully.
It is important that the user does not modify the .OB, .TREE, and
.STR files during development, as they are used subsequently by the
linker.

SCnR - object code,

• .SR - assembly code equivalent,

* .LST - the listing,

.TREE - the intermediate representation of the source code in the
DIANA form,

* .STR - the string information for the DIANA tree.

6.2.1.3.2 VAX/VMS - A "program library" is a directory in the
VAX/VMS Ada Compilation System. All resultant files except the .LIS
file are placed into this program library directory. It is important
that the contents of this directory not be changed by the user except
througri the use of the ACS.

The compiler generates the resultant files and updates the program
library if the compile completes with a severity level less than
(E)rror. The resultant files generated by the compiler are:

• .OBJ - the object code,

• .ACU - a "compunit" file,

* .ADC - a copied source file,

• .LIS - the list file.

3

3-278

I ENVIRONMENT EXPERIENCES
Integration Into Environment

6.2.1.4 Integration Into Environment

It is important to note the degree to with the compiler is integrated
into the overall operating system environment.

6.2.1.4.1 AOS/VS - To use the features of the ADE a user must first
ENTER" the ADE. A command is provided to do this. Once entered,
the command prompt is changed to "-)" to indicate to the user that
ADE commands are available to be executed. Once in the ADE, ADE
commands and AOS/VS commands can be used. However, when not in the
ADE only AOS/VS commands can be safely used. The others can be
executed (in some instances) but with unpredictable results.

An example session of entering the ADE and compiling a demonstration
program is given here.

enter :userl:atb:aim
-) batch ada temp
Creating directory :UDD:BORGER:BATCH to hold batch job output files.
QUEUED, SEQ=18644, QPRI=127

I -) baty

**** TI Ada Work Center / BATCH OUTPUT FILE *

AOS/VS 5.03 / EXEC 5.03 5-JUN-85 12:51:58
QPRI=127 SEQ=18644
INPUT FILE -- :USER1:ATB:AIM:FINAL RELEASE:DEMO:?008.CLI.001.JOB
LIST FILE -- :QUEUE:BORGER.LIST.18644

LAST PREVIOUS LOGON 5-JUN-1985 12:41:20

AOS/VS CLI REV 05.01.00.00 5-JUN-85 12:51:59
SEARCHLIST :USERI:ADE:MACROS,:MACROS,:UTIL,

:USERI:ATB:AIM:MACROS,:TCS
DIRECTORY :USERI:ATB:AIM:FINAL RELEASE:DEMO
DEFACL SYS MGR,OWARE,BORGER,OWARE,+,WRE
enter/flat7no news/proj?=:USER1:ATB:AIM

ADE Revision 2.20.00.00 from directory :USERI:ADE
-) ada temp

Command line parsed.
Ada Compiler Rev. 02.20.00.00 6/5/85 at 12:52:11

Reading from :USERI:ATB:AIM:FINALRELEASE:DEMO:TEMP.ADA
5 syV!- errors
Procedure body TEST ERRORS has NOT been added to the library.
2 semantic errors
Code generation suppressed

Used 0:00:01 in 0:00:03

3
I

3-279I

ENVIRONMENT EXPERIENCES
Integration Into Environment

-) exit
Leaving the Data General/Rolm Ada Development Environment.
AOS/VS CLI TERMINATING 5-JUN-85 12:52:16

PROCESS 7 TERMINATED
ELAPSED TIME 0:00:16
(OTHER JOBS, SAME USERNAME)
USER 'BORGER' LOGGED OFF 5-JUN-85 12:52:16

* LIST FILE EMPTY, WILL NOT BE PRINTED

-) type temp.lst

Ada 2.20.0.3 6/E/C3 at 12:52:12
:USERI:ATB:AIM:FINALRELEASE:DEMO:TEMP.ADA page 1

1 I WITH nothing
2 I PROCEDURE test-errors IS

Syntax error with input 'procedure' (Line 2, Column 1).
Inserting '; immediately before procedure'

(Line 2, Column 1).

3 1 TYPE mine IS RANGE ;
--

Syntax error with input *;' (Line 3, Column 20).
Replacing '; (Line 3, Column 20) with ' '.

4 1 glitch;

Expression appears where range attribute is expected..
---- 4--

5 I BEGIN
6 1 hoo doo();

Empty parameter list, '()', in call..

7 1 END test errors;

() not allowed in proc call.
1 with NOTHING;
NOTHING denotes no unit in the library.

6 HOO _DC;
HOO DCO is undefined.

3-280

N

n ENVIRONMENT EXPERIENCES
Integration Into Environment

1 6.2.1.4.2 VAX/VMS - The VAX/VMS Ada compiler is embedded in the Ada
Compilation System (ACS). The program library must be set up before
the compiler can be invoked (if it is not setup, an error message is
generated and the compilation is aborted). Once the program library
is setup, Ada compiles can be started from the VAX/VMS command
interpreter through the ADA command.

I $ acs set librar [.lib]
$ ada temp/list temp

S WITH nothing

........................ 1
%ADAC-BE-INSSE1., (1) Tnserted ";" at end of lir-

3 TYPE mine IS RANGE;
...........................1
%ADAC-E-IGNOREUNEXP, (1) Unexpected ";" ignored.............. 2

%ADAC-I-IGNOREDECL, (2) Declaration ignored due to syntactic
errors within it

3 6 hoodoo();
.. 1
%ADAC-E-IGNOREPARENS,.(1) Empty parentheses ignored

1 7 END test errors;
%ADAC-F-TERMSYNTAX, Terminating compilation due to syntax error(s)
%ADAC-F-ENDABORT, Ada compilation aborted

I $ type temp.lis

5-Jun-1985 12:5
6:40 VAX Ada Vl.0-7 Page 1
7:43 USERI:[FRENCH]TEMP.ADA;l (1)

1 WITH nothing.............. 1%ADAC-E-INSSEMI, (1) Inserted ";" at end of line

2 PROCEDURE test errors IS
3 TYPE mine IS RANGE ;

........ 1.... 2
%ADAC-E-IGNOREUNEXP, (2) Unexpected ";" ignored
%ADAC-1-IGNOREDECL, (1) Declaration ignored due to syntactic

errors within it

4 glitch;1 5 BEGIN
6 hoodoo();

..................... 1

I
I

3-281•I

ENVIRONMENT EXPERIENCES
Integration Into Environment

%ADAC-E-IGNOREPARENS, (1) Empty parentheses ignored

7 END test errors;
%ADAC-F-TERMSYNTAX, Terminating compilation due to syntax error(s)

COMMAND QUALIFIERS

ADA/LIST TEMP

QUALIFIERS USED
/CHECK/COPY SOURCE/DEBUG=ALL/ERROR LIMIT=30/LIST/NOMACHINE CODE
/NODIAGNOSTICS/LIBRARY=ADASLIB
/NOTE SOURCE/OPTIMIZE=TIME/NOSHOW/NOSYNTAXONLY
/WARNINGS=(NOCOMPILATION NOTES,STATUS=LISTSUPPLEMENTAL=ALL
,WARNINGS=ALL,WEAKWARNTNGS=ALL)

COMPILER INTERNAL TIMING
Phase CPU Elapsed Page [, -

seconds seconds fault- count
Initialization 0.40 1.88 249 24
Parser * 0.39 2.72 244 24
Compiler totals * 0.79 4.61 493 58

COMPILATION STATISTICS
Weak warnings: 0
Warnings: 0
Errors: 3

Peak working set: 1000
Virtual pages used: 4593
Virtual pages free: 32031
CPU Time: 00:00:00.79
Elapsed Time: 00:00:04.61
Compilation Complete

6.2.1.5 Functional Capabilities

The following table presents an objective comparison of the more
important capabilities of both compilers.

VAX/VMS
___AOS/VS/ADE

assembly language generation I-x---x-
conditional compilation I- -- x-
debug information generationI _-x-Jx-
enable and disable listing -x- I

3-282

I

3 ENVIRONMENT EXPERIENCES
Functional Capabilities

I errors only listing x I
set default directory for source. . I _lx-

set listing width and height I -_-__-I
specify different program library. . ..
Specify main program
disable use of SYSTEM library I _x_ I
suppress all run-time checksI _xx
Multiple files compiled at one time. . .1 _x l
language sensitive editor support. . . . -xI
specifying an error limit Ix_ I
enabling/disabling an error category. . Ix_1 - 1
enable/disable optimization - -l_
syntax only checking _xI I

6.2.2 Linker

Both systems contain a linker capable of linking together object
modules using information stored in the program library. In this
section the method of linking, error messages, and resultant files
will be examined. Also, the degree to which the compiler is
integrated into the environment will be explored.

Finally, a table is given showing the objective capabilities of theI two linkers.

6.2.2.1 Method Of Linking

6.2.2.1.1 AOS/VS - The Ada linker is a special linker provided in
the ADE to link together Ada object code into an executable image.
The executable image can then be run either in or out of the ADE.

3 The ADE Linker produces a program file via these steps:

i. find all libraries specified when the main program was compiled,

1 2. check the program for Ada completeness,

3. generate an object module that contains code to elaborate the
program,

4. assemble the elaboration object module, and

5. link all modules together (using the standard AOS/VS linker).

As is obvious from above, the ADE linker uses not only the AOS/VS
linker, but also the Macroassembler (MASM) to produce the program
file. The following is a flow diagram for the ADE linker:

I
I

3-283U

ENVIRONMENT EXPERIENCES
Method Of Linking

DEBUG.OB --------------------------
SCHEDULER.OB --------------------
'Runtime Libraries (.LB) ------- I
Binary for WITHed units----+ I I I
Elaboration Binary -------+ I I I I

Input Files I I I I
VV V VV

.tree ----------+ -------- + ----------+

.lib >]ADE I...JAOS/VSI...CLI...I AOS/VS I Program FiLe

.str I Loader I I MASM I I Linker ----- > (.PR)
4------------ 4---------- 4------------

i /\
V /

Temporary elab.sr / elab.ob
Files: TAssemblyT- -B3nary Object)

-- Represents control flow

The command line to invoke the ADE Ada linker is -s fol!Lws:

-) ADALINK [/switch [=option] I filename

Where the filename is the name of the source file. If the ".ADA"
extension is omitted, then it will be assumed.

Tne linker must be invoked from the batch stream. Here is an example
linking a previously compiled program.

-) batch adalink/debug testl
-) baty

**** TI Ada Work Center / BATCH OUTPUT FILE ****

AOS/VS 5.03 / EXEC 5.03 11-JUN-85 8:31:02
QPRI=127 SEQ=!8737
INPUT FILE -- :USERl:ATB:AIM:?007.CLI.001.JOB (WILL BE DELETED AFTER

PROCESSING)LIST FILE -- :QUEUE:BORGER.LIST.18737

LAST PREVIOUS LOGON ll-JUN-1985 8:28:12

AOS/VS CLI REV 05.01.00.00 11-JUN-85 8:31:04
SEARCHLIST :USERI:ADE:MACROS,:USERI:BORGER:MACROS,:MACROS,:UTIL,

:SCRED,:USERI:ATB:AIM:MACROS,:TCS
DIRECTORY :USERI:ATB:AIM
DEFACL SYSMGR,OWARE,BORGER,OWARE,+,WRE

3-284

I

I ENVTRONMENT EXPERIENCES
Method Ot Linking

I) enter/flat/no news/proj?=:USERl:ATB:AIM
ADE Revision 2.70.00.00 from directory :USERI:ADE
-) adalink/debug testl

Command line parsed.
Ada Loader Rev. 02.20.00.00 6/11/85 at 8:32:42
Creating PR file :USERl:ATB:AIM:TESTl

I -) exit

Leaving the Data General/Rolm Ada Development Environment.

AOS/VS CLI TERMINATING 11-JUN-85 8:34:38

PROCESS 8 TERMINATED
ELAPSED TIME 0:03:34
(OTHER JOBS, SAME USERNAME)
USER 'BORGER' LOGGED OFF 11-JUN-85 8:34:38

* LIST FILE EMPTY, WILL NOT BE PRINTED

6.2.2.1.2 VAX/VMS - The ACS Ada linker is a special linker provided
to link Ada object files with other Ada object files, and/or foreign
object files. Once linked, the resulting executable image is
executed from the VAX/VMS command language interpreter. It does not
need to be run from within the ACS (and, in fact, cannot).

The ACS Linker produces an executable image via these steps:

1. issues a CHECK command to form the closure of the main program
and verify that all units in the closure are present and current.
If ACS detect an error, the operation is terminated before the

linker is invoked.

2. creates an object file (to be linked with the program) that
elaborates the library units in the proper order at run time,

3. creates a command file for the VAX/VMS linker,

4. invokes the VAX/VMS liiker.

I The command line to invoke the ACS Ada linker is as follows:

$ ACS LINK l/command switches] [/parameter switches]
or main-program-name [filename [,filenamel* I

or

U
3-285I

ENVIRONMENT EXPERIENCES
Method Of Linking

$ ACS LINK/NOMAIN unit-name [, unit-name j E filename [,filenamel* I

"command switches" apply to the command (and, therefore, across all
of the --ilenames), "parameter switches" apply to the specific
parameters on which they are located.

The first form is to link a program in which the main p.'ogram is an
Ada unit. The second form is to link Ada units to a non-Ada main
program that is specified in jne of the filename parameters.

An example link session is as follows:

S acs link testl
%ACS-I-CL LINKING, Invoking the VAX/VMS Linker
$SET DEFAULT USER1:[FRENCH]
SLINK : "
SLINK-
/NOMAP-
/EXE=[JTESTl-

SYS$INPUT:/OPTIONS
USERI:[FRENCH]TESTI.OBJ;l
SYSSCOMMON:[SYSLIB.ADALIB]IO EXCEPTIONS .OBJ;l
SYSSCOMMON:[SYSLIB.ADALIB]TEXT 10 .OBJ;-1
SYS$CCMMON:[SYSLIB.ADALIBITEXT_IO.OBJ;l
USERI:[FRENCH.LIBIPACK1.OBJ;4
USERI:[FRENCH.LIB]PACK1.OBJ;4
USERi:[FRENCH.LIB)TEST1.OBJ;4
$DELETE USERI:[FRENCHITESTi.OBJ;1
SDELETE USERI:[FRENCH]TESTI.COM;1

The only true command was "$ acs link testl". The rest was generated
by the link operation. This information is normally not seen by the
user.

6.2.2.2 Error Messages

From both systems error message can come from the link operation
prior to submitting to the host OS linker, and from the host OS
linker itself.

6.2.2.2.1 AOS/VS - Error messages in the ADE link operation are
given in the batch stream as they occur. An example is shown.

-) adalink/debug testl
Command line parsed.
Ada Loader Rev. 02.20.00.00 6/11/85 at 8:37:25
PACIKI was compiled after body of TESTI

Unit is not complete

J-286

ENVIRONMENT EXPERIENCES
Error Messages

3 -) exit

6.2.2.2.2 VAX/VMS - Errors in the VAX/VMS link operation conf(rm to
the standard error message format that all tools on the VAX/VMS
system use. An example is:

l %ACS-E-CLMAIUNIKIN, Main unit PACK1 is a package body,
not a subprogram body

This message comes from a link operation performed prior to
submitting to the VAX/VMS standard linker. The VAX/VMS standard
linker has the same error message format.

1 6.2.2.3 Resultant Files

Both systems generate executable files when the link operation
l successfully completes. Both also generate a map file.

6.2.2.3.1 AOS/VS - The following files are generated from the link

operation:

3 * .MAP - the link map file (from the AOS/VS linker)

! .PR - the executable file

3 .ST - debugger symbol table file

3 * .LOG - link messages

6.2.2.3.2 VAX/VMS - The following files are generated from the link

3operation:
* .MAP - the link map file (from the VAX/VMS linker)

3 * .EXE - the executable file

* .COM - the command file that invokes the VMS linker

* .LIS - the link messages (that are normally sent to the terminal)

3 6.2.2.4 Integration Into Environment

Both systems are integrated into the standard host operating system
environment as much as possible. Both use the standard linker after
preprocessing the library to generate elaboration code. The ADE
linker generates assembly language then assembles it, and links all

3
I

3-2 87"

I

ENVIRONMENT EXPERIENCES
Integration Into Environment

the object modules together. The VAX/VMS Ada linker generates object
to support elaboration then links it with the other object modules.
Effectively, both perform in the same manner. The VAX/VMS linker
generates better, more consistent mdssages.

6.2.2.E Functional Capabilities i
The following table presents an objective comparison of the more
important capabilities found in the two systems Ada linkers. I

VAX/VMS
AOS/VS/ADE 5

non-Ada link capability -x-lT- -1
deferred (after a specific time) I-x - I
enable/disable link map generation - -I
specify full/brief link map - - -

generate a link command file x
enable/disable symbol cross-reference I-x-- I
generate debug information I-x- --x- I
enable/disable executable file creation I-x-i- -
specify batch/nobatch operation I -x I
specify map filename I-x-1 I
specify object filename I-x- I I
specify diagnostic output file I-x I
enable/disable system library search I-x- -x- I
enable/disable traceback info (-x-1- -I
library search capabilities -x-i-X I
extended options capabilities I-x-l- -1
sharable image support t- x-i-

specify maximum memory - xIforce load(--x

enable/disable library trace I x-
specify main program I -x_ I

non-Ada main program T

6.2.3 Ada Source Code Debugger 3
As the AIM (DG) implementation/integration proceeded, it became clear
that, besides the compiler and linker, the DG Ada source code
debugger was the single most important utility in the ADE toolset. m
Furthermore, when the completed AIM program was transported from the
DG ADE to the VAX/VMS Ada environment, the DEC Ada source code
debugger was used extensively and proved to be an invaluable tool in
this rehost effort. It is apparent from our AIM implementation,
integration, and rehost experiences that an Ada source code debugger
is not only an invaluable APSE tool, but also mandatory for the
development of complex, concurrent Ada software systems.

I
3-288 3

I

I
ENVIRONMENT EXPERIENCES

Ada Source Code Debugger

3 It is the purpose of this section to compare the Ada source code

debuggers of the DG ADE and DEC Ada environment at two levels:

3 * Preparatory Requirements

* Functional Capabilites

1 6.2.1.1 rt-piler/Linker Requirements

The preparatory requirements are similar for both the DG and VAX Ada
Source Code Debuggers: all compilation units to be debugged must be
compiled with the /DEBUG option, and subsequently, the main program
must be linked with the /DEBUG option. The DEC Ada Environment
supports a /NODEBUG option on its RUN command which allows the user
to activate a program image without the debugger even if it was
linked with the /DEBUG option, whereas the ADE's XECUTE command does

i not.

6.2.3.2 Functional Capabilities

The following functional capabilities checklist represents the
majority of Ada Source Code Debugger features that are necessary to
efficiently debug Ada programs.

II
I
I
I
I
!
I
I

3-289I

ENVIRONMENT EXPERIENCES
Functional Capabilities

_______VAkX/VMS

AOS/VS/ADE

Breakpoints (set/reset) on -7
statements -
program units I
subprograms....... _X_ xi
packagesl x
tasks X

generic units...... ixix
exceptions............... * K_*Tracepoints (set/reset) on K i _

statements...........I x
program units I-__

subprograms. I _x_ IxI
packages...........lx I
tasks.lxi __

generic unit s.. x -I I
exceptions. x Ix
rendezvous..........- x

Watchpoints for vari~ables...... x
Display KT

program sourceI __ l I
history...... I Ixl1
stack. I _X_ I x1
tasks....... x x
breaks....... x x
tracepoints. I X_ I xl1

Evaluate objects......... I K
Step I-K

single I x I
by discrete amounts.... x
into subprograms........ x i
over subprograms........ __x
to next rendezvous I-__
to end of program unit..... I x

miscellaneous I__I_
symbol abbreviation. I ___ I
set context for program controlI _x_ K-xl
input debugger command files..__x
modify variables' value... __x

console interrupt. I__lx
full screen mode....................I x' * __

keypad mode for entering cmmans I _x_ 1_

3-290

ENVIRONMENT EXPERIENCES
Program Librarian And Library Structure

6.2.4 Program Librarian And Library Structure

As a consequence of the Ada Language Rule: "Compilers are required
to enforce the language rules in the same manner for a program
consisting of several compilation units (and subunits) as for a
program submitted as a single compilation."[DOD831, all Ada
Programming Support Environments must maintain an Ada program
library. The intent of this section is to provide a comparison
between the DG ADE and DEC Ada Compilation System (ACS) program
libraries and to evaluate the functional capabilities of their3 respective program librarians.

6.2.4.1 ADE Program Library

The ADE program library contains information to help the ADE linker
find the required object code files and to provide the ADE Ada source
code debugger with program unit information. Upon the successful
compilation of an Ada compilation unit, the following file types are
written to the directory containing the target Ada program
library (which is by default the current working directory):

Filename Explanation
Extension

.OB Relocatable binary (object code) for the compilation unit.

.SR Assembly language equivalent of the compiled library unit.

.LST Compilation listing file.

.TREE Diana tree representation of compilation unit's source code.

.STR String information relative to the Diana tree.IThe program library file (.LIB) in conjunctinwt the ADE library
manager utility provide the following ifraonabout the Ada

compilation units in the program library:

date/time stamp for syntax checking, semantic analysis, and code
generation,

* unit completeness information,

5 * names of the source and object code files corresponding to a
compilation unit,

* the type of program unit or subunit (i.e.--subprogram, task,
package, generic, subprogram body, package body),! the names of other library units WITHing this unit, and

3
I

3-291

I

ENVIRONMENT EXPERIENCES
ADE Program Library

* the names of other library units WITHed by this unit.

One last feature of the ADE program library is the program library
searchlist. By using the LIBSEARCHLIST command, one may extend the
list of program libraries that are searched (which always starts with
the current working directory and ends with the ADE directory
containing the SYSTEM package specification) in order to resolve any
WITH dependencies that are not satisfied within the context of the
current program library. This tends to be a very powerful feature as
it promotes a tree structured project directory with program
libraries located at the leaves of the Lree.

6.2.4.2 ACS Program Library

As with the ADE, all Ada compilations within the ACS are performed in
the context of a program library. An ACS program iibrary is a
dedicated VAX/VMS directory which consists of the following files on
a per compilation unit basis:

Filename Explanation
Extension

.ALB Library index file indentifying all files in the library.

.OBJ Relocatable binary (object code) for the compilation unit.

.ACU Internal representation of compilation unit.

.ADC Identical copy of compilation unit's source cede.

The VAX/VMS Ada program librarian supports most of the capabilities
previously mentioned in the ADE program library section. One major
difference between the two program libraries is the mechanism used
for accessing library units which reside in outside the current
library. The ADE uses a library searchlist technique, whereas the
ACS requires that the library unit in question be either COPIED or
ENEPRZD into the current library. The major drawback with this
technique is that when an accessed library unit is recompiled it must
be re-copied or re-entered into the current program library.

6.2.4.3 Functional Capabilities

The following functional capabilities checklist represents the
majority of Ada program librarian features that are necessary to
efficiently build Ada systems.

3-292

ENV I RONMENT EXPERI ENCES
Functional Capabilities

I VAX/VMS

AOS/VS/ADE

Listing Information
directory of unit names x x
associated file names for unit x
units WITHing specified unit.. . . -.-
units WITHed by specified unit . .-- .x-
time-stamp information x _ x I
kind of compilation unit I_x_1lxi1

Auoai eoplto..........xCompleteness and Currency check I ~_x_ hAutomatic recompilation........ .I -- -

Spawn CLI subprocess...... .. -.. x_ x
Remove compilation unit. -....... x
Library Access Control - -
Read Only. x x"I
Exclusive. . . -...........x_ l--

nI,
I

I
I
I

I

I
I

3-293

I

ENVIRONMENT EXPERIENCES
Configuration Management And File Structure

6.2.5 Configuration Management And File Structure

The intent of this section is to provide a comparison between the DG
and DEC configuration management tools and to evaluate* their
functional capabilities.

6.2.5.1 ADE Configuration Management

The Text Control System (TCS) provides fundamental configuration
management support within the ADE. It provides version and variation
control for Ada source code and documentation files. The basic TCS
commands are listed below with a cross reference back to the
corresponding operation of DEC's Code Management System (VAX/C4S):

ACCESS Creates a copy of a controlled text file version in
the current working directory (CMS FETCH).

CHECKIN Checks in a previously checked out version of a
controlled text file (CMS REPLACE).

CHECKOUT Creates a copy of the latest version of a controlled
text file in the current working directory; this file
is then marked to prevent other users from checking it
out of the control library (CMS RESERVE).

NEWBASIS Creates a NEW, separately controlled, variation of a
controlled text file. A "basis" name is used to
differentiate one variation of a file from another.
(CMS REPLACE/VARIANT=)

NEWTCS Places a new file under text control (CMS CREATE).

REVMARK Marks a specific version of a controlled text file as
belonging to a particular "revision" level (CMS
INSERT).

TCSPRINT Output information about controlled text files (C4S
SHOW).

6.2.5.2 VAX/VMS Configuration Management

VAX/CMS is a library system which provides fundamental configuration
management in support of software development and documentation. The
basic CMS commands are listed below with a cross reference back to
ADE TCS command where applicable:

3-294

I
ENVIRONMENT EXPERIENCES

VAX/VMS Configuration Management

ANNOTATE Creates an annotated element listing in current

working directory.

COPY ELEMENT Copies an exiting element to form a new element.

CREATE CLASS Establish a new CMS class.

CREATE ELEMENT Creates first generation of a file from the
current working directory (TCS NEWTCS).

3 DELETE CLASS Delete an established class.

DELETE ELEMENT Delete all generations of an element in the CMS
library.

DIFFERENCES Textually compare two elements from the -MS
library.

3 FETCH Get a local copy of the specified element(TCS
ACCESS).

INITIALIZE Convert a normal VAX/VMS directory into a CMS
library.

INSERT Place an element into the specified class (TCS3 REVMARK).

REMOVE Remove an element from the specified class.

3 REPLACE Return an updated copy of a previously RESERVED
element (TCS CHECKIN).

RESERVE Reserve a copy of an element and place it into
the current working directory (TCS CHECKOUT).

SET LIBRARY Identify an existing CMS library as the current
CMS library.

SHOW CLASS Display all established tMS classes.

3 SHOW ELEMENT Display a listing of all elements and their
corresponding files (TCS TCSPRINT).

SHOW HISTORY Show an entire transaction history for the -MS
library.

I
I
I

3-295I

ENVIRONMENT EXPERIENCES
VAX/VMS Configuration management

SHOW LIBRARY Show the currently set CMS library.

SHOW RESERVATIONS Display a listing of all current reservations
outstanding for the 0MS library.

UNRESERVE Cancels an existing C.MS reservation.

VERIFY Perform a series of consistency checks on the
current CMS library.

6.2.5.3 Functional Capabilities

The following functional capabilities checklist represents the
majority of Configuration Management features that are necessary to
maintain the development of source code and documentation.

VAX/VMS (CMS)
AOS/VS (TCS)

Configuration Library -T-
create..................l
delete x11
verify xi

Library Elements......__
create........ x
delete. x x
fetch............. ___
reserve............
unreserve....... __

replace............ x
differences.......

Element Classes __-

create.................i _x_1 Xl
delete........ __
insert element........I _x
remove element......I

Listings............
elements................I _x_ _

reservation.......I_
history............ x
annotation....... _xI

3-296

I
ENVIRONMENT EXPERIENCES

Text Editor

I 6.2.6 Text Editor

The intent of this section is to provide a comparison between the DG
and DEC text editors and to evaluate their functional capabilities.

6.2.6.1 ADE Text Editor

The DG supplied text editor (SED) is terminal dependent as it emits
DG escape sequences to perform its functioning; therefore, it is not
usable on the TV970 terminals connected to our LAN. For this reason,
a commercially available (terminal independent) full screen editor
capable of running under the AOS/VS operating system had to be
purchased. The only editor found that satisfied these requirements
was called SCRED. SCRED is full screen, terminal independent text
editor developed by Rational Data Systems to run under the AOS/VS
operating system. Although SCRED's capabilities in no way rival
those of an editor like EMACS, it does support some nice features:

3 * Terminal independence via a terminal capabilities file

* Personalized key bindings via the terminal capabilities file

3 * Regular expression search and replace functions

* Built-in HELP function

3 * User defined command macros built upon the predefined command set

3 6.2.6.2 VAX/VMS Text Editor

The text editor used in our VAX/VMS environment is the Unipress Inc.
version of Gosling's EMACS. To date, the EMACS editor is the most
complex and powerful terminal independent text editor available for
VAX/VMS. Some of its features include:

3 * Terminal independence via a terminal capabilities file

* Split screen capability

- Edit several files simultaneously

- Different portions of same file may be edited concurrently

I
I
I
I

3-297I

ENVIRONMENT EXPERIENCES
VAX/VMS Text Editor

- Any user or VMS system program may be executed from within a
special Shell window

* Help facility by command name and subject matter

* Great extensibility

- Any key or key sequence may be re-defined by user

- User-definable macros (keyboard or by name)

- MLISP programming language built-in

* Regular expression search and replace functions

* Ada Programming mode and Ada-LRM automated access

* Backups previous version of files and performs periodic

checkpointing

6.2.6.3 Functional Capabilities

The following functional capabilities checklist represents the
majority, of text editor features that are necessary to efficiently
develop Ada code.

3-298

I
3 ENVIRONMENT EXPERIENCES

Functional Capabilities

I VAX/VMS (EMACS)
___AOS/VS (SCRED)

Cursor Movement I
Left, Right, Up, DownI xIxi
Top, Bottom Ix- -x-
Beginning/End of line .-.... x_ -x-.
Next/Previous Word -x- x

Search/Replace
Search Forward x x
Search Reverse _x_ -x
Regular Expression Search _x_ -x-

Regular Expression Replace _x_ x
Multiple Replace x Kxh

Buffers
Copy text to IxI x
Copy text from _x_ x-h
Split Screen Ix__ -Edit multiple files... . . . x

Regions
Set mark Ix _x
Kill region _x_ -x-
Copy region _x_ -x-
Move region x -x-

File Manipulation .
Copy from file I _x I-xI
Append to file _x_ --

Macros

Keyboard macros._x I
Macro language _x_ --
Ada Mode X I
Ada LRM automated access x-

Miscellaneous
Terminal independent I _x Tx
On-line help facility _x_ _x_
Minimal redisplay algorithm .-..... Ix_ -
Keypad, function key re-definition . _x_ -I
Undo Capability I- -x-)
Spawn CLI] _x_ I--
Command iteration x
Command type-ahead x

I
I
I
I

3-299

I

ENVIRONMENT EXPERIENCES
Electronic Mailer

6.2.7 Electronic Mailer

The intent of this section is to provide a comparison between the DG
and DEC electronic mail utilities and to evaluate their functional
capabilities.

6.2.7.1 ADE Electronic Mailer

One of the most often heard complaint about the ADE was that it did
not include an electronic mail utility per se. The only mailing
capability available to our implementation team was that supported by
a simple AOS/VS CLI command macro. Essentially this mail macro, when
invoked, creates (if necessary) a text file corresponding to the
sender-receiver pair and appends the new message onto that text file.
Needless to say, this was unacceptable and was rarely, if ever, used
by our team. Therefore, we relied so-ely on the VAX/VMS electronic
mailer.

6.2.7.2 VAX/VMS Electronic Mailer

VAX/VMS supports personal electronic mail between system users via
its MAIL utility. The AIM implementation team used this mailer for
general purpose communications even though the development was being
done the Data General system. This utility is a comprehensive
electronic mailer supporting numerous functions:

* send/receive messages

* mail folders

reply to/forward messages

N archive/print/delete messages

* edit messages to be sent

* send messages to a list of users

* send messages across DECnet

* on-line help facility

6.2.7.3 Functional Capabilities

The following functional capabilities checklist represents th'
majority of Electronic Mailer features that are necessary to support
the team communication during software development.

3-300

I
ENVIRONMENT EXPERIENCES
Functional Capabilities

I VAX/VMS (MAIL)
___AOS/VS (MAIL.CLI)

Message related functions - I
Send --x -x
Receive _x_ -xi
Immediate forwarding
Immediate reply -- _

ArchiveI-x- - -

Print xlxi
Search for string: -_x_
Edit message to be sent _xlx
Read next message -x- -
Read previous message .-. I x_1 I
Read first message -x-i I
Read last message _x_ I
Position to start of current message -x-_ I

Miscellaneous I- -l I
Keypad support I _x- I I
On-line help facility. I-x _x
Send to distribution lists -x--x-
Send across DECnet _x_-_ _
Mail folders _x_ II

3 6.2.8 Conclusions

There are various conclusions that can be drawn from our experiences3 in using both the DG ADE and DEC ACS development environments:

* The two environments contained very similar tools.

n The DEC Ada Compilation System is more integrated into the
VAX/VMS host operating system.

* The DEC ACS tools generate more consistent and informative

messages.

* The power of the editor and debugger directly affects
programmer/designer productivity.

* The DG program library mechanism, specifically the LIBSEARCHLIST
conecpt, better supports a tree-structured approach to managing
project directories.

I
I
I

3-301I

ENVIRONMENT EXPERIENCES
Conclusions

* It is important to have a usable electronic mail system to

promote communications between programmers/designers/managers.

3-302

I
U
I

l CHAPTER 7

LIFECYCLE ANALYSIS

l 7.1 INTRODUCTION

The AIM project started in October 1982 with the purpose of exploring
and determining interface issues and problems with Ada Program
Support Environments (APSEs). During this time, a detailed record of
effort was kept. The intent of this chapter is to present an
analysis of the AIM lifecycle as well as map that effort to software
lifecycle and software cost models.

This chapter is organized to give an overview of the tasks,
deliverables, testing methodology, and Lines-of-Code figures followed
by comparisons of the AIM project to various models. A conclusions
section is included to give the reader the perspective of the AIM
team. Hopefully, enough data is included to allow the reader to draw
his or her own conclusions.

7.2 PROJECT OVERVIEW

The AIM project was atypical in that the primary intent was to
investigate APSE interfaces with the resultant tool a by-product. As
a result, numerous reports were required and participation in several
working groups evolved (Common APSE Interface Set (CAIS)
participation by Tim Harrison and Guidelines and Conventions (GAC)
participation by Stewart French). Also, the code was written in Ada
for which there were few compilers and non-existent Ada project
history on which to base estimates or make projections. Foresight by
the project manager (John Foreman) resulted in a table of efforts to
which time was charged for use in tracking the various phases of the
project. These are shown in Table 7-i. This tracking scheme was
begun three months into the project and as a result, some time was
charged to Requirements Definition that rightfully should have been
charged to System Specification and Preliminary Design.

3
I

I

LIFECYCLE ANALYSIS

PROJECT OVERVIEW

Table 7-1 Efforts Tracked for the AIM

Requirements Definition
Financial Accounting
System Specification
Preliminary Design
User Manual
Detailed Design
Hardware/Software Problems
Implementation
New Hire (Training)
Integration
Rehost
Quality Assurance
Testing
CAIS
GAC
Data Management
Interface Reports
Software Tools
Configuration Management
Program Management

One shortcoming of the division of efforts occurred in testing. A
separate catagory for each testing phase (unit, integration,
acceptance) would have facilitated the model comparisons. Testing
included writing the Acceptance Test Plan, Acceptance Test
Procedures, Computer Program Test Specification, System/Integration
Test Plan, and System/Integration Test Procedures. These documents
were written during the design phase of the project and charged
against "Testing" shown in Table 7-1. Time was also charged against
the Testing effort when integration testing began. Thus the table
entry for Testing was used twice with the time gap between the
corresponding groups used to distinguish each effort. Unfortunately,
unit testing was not tracked.

Figure 7-1 shows the time span of each effort. Also included are
markers for the Preliminary Design Review (PDR) and the Critical
Design Review (CDR). The gap occurring in the summer of 1984 was
caused by the expiration of the original AIM contract before an
extension could be finalized and because, at that time, a
satisfactory Ada compiler had not yet been obtained. The AIM
restarted in September of 1984.

3-304

LIFECYCLE ANALYSIS3 PROJECT OVERVIEW

Li

-9U, _ ___ __ ~ TL~tr
fu

I Figure 7-1 AIM Schedule Chart

3-3 05

LIFECYCLE ANALYSIS
Systems

7.2.1 Systems

Initial development of the AIM documents was done on a T1990
minicomputer which was used primarily for documentation and
communication. However, since there were not adequate communication
facilities available on this a mail utility was developed to
supplement communication between team members. An existing terminal
emuiator was then modified to allow access to the ARPAnet. The
ARPAnet was used as the primary means of communication with the Naval
Ocean Systems Center (NOSC), the project contractor. The
documentation formatter was also improved to increase the number of
paragraph levels allowed in a document. The time spent on these
tasks was charged to the effort titled "Software Tools" in Table 7-1.

In April of 1983 the project began a migration to a VAX 11/780 which
has proven significantly more reliable than the T1990 computer
system. The effort titled "Hardware/Software Problems" (see Table
7-1) was used to track system crashes, reboots, access denial due to
load limitations, and maintenance. By the end of 1983 all work was
being performed on the VAX (All problems did not vanish with the
transition but they were greatly reduced). The first task undertaken
on the VAX was to write a terminal emulator similar to the existing
T1990 emulator. All existing AIM documentation was then ported to
the VAX from the T1990. To facilitate the transition from the T1990
text formatter to the VAX-11 Digital Standard Runoff, a quick and
dirty routine was written that converted roughly 90% of the T1990
text formatter conuaands to Runoff commands. The remaining 10% were
converted with an editor.

As mentioned earlier, a satisfactory compiler for the VAX had no yet
been obtained in the summer of 1984 when imrnlementation was to begin.
The solution was to lease a Data General (DG) MV/10000 in September
of 1984. The DG system was leased to take advantage of the Ada
Development Environment (ADE). The finalization of the AIM contract
extension preceded the arrival of the DG system by about a month. By
the end of implementation and testing of the AIM on the DG system, a
validated Ada compiler was available on the VAX. A rehosting effort
(a no cost contract extension to include this effort) was then
undertaken to move the AIM from the DG to the VAX. This effort was
tracked under the title of "Rehost" in Table 7-1.

7.2.2 Personnel

The three original team members have remained involved (in one
capacity or another) throughout the 33 months of the project. One of
the original members became involved in the CAIS work full time under
the umbrella of the AIM contract. One member became primarily the
program manager for the AIM project as well as other projects. The
remaining member of the original team was the project technical

3-J06

LIFECYCLE ANALYSIS
Personnel

leader as well as a member of the GAC working group. Other personnel

have been added as needed. Each new member went through a learning
curve. This effort is reflected under the title "New Hire" in Table
7-1. The personnel remained very stable throughout the project with
participation varying from full time to minimal depending on the
current project phase. Besides the three orignal members, two others
who joined the project in the first six months remained until the
end. Of all the personnel involved with the AIM only one person
could be considered as having "turned over". Several others have
contributed to specific phases of the project (e.g., one wrote the
Configuration Management Plan, one was involved in documentation
updates). One other person joined the project at the beginning of
implementation and remained until the completion of the contract.II

I

7

man 5
months

4

3

2

, 111F11A J iI I 1-4I0 "d1 I I I 1 0 i i

0ND J FMAMJ JAON D J F M AM J J A S 0 N D 4 F M AM J
1982 193 1984 1985I

I Figure 7-2 AIM Manloading

I
I

LIFECYCLE ANALYSIS
Personnel

Figure 7-2 shows the manloading for the AIM project. The numbers
shown are total man-months per month. Again, note the gap for the
summer of 1984. Reading from left to right on Figure 7-2 you will
note an initial small peak in December of 1982 which corresponds to
the Requirements Definition effort. This is followed by the largest
peak representing the Design effort (this includes writing the test
documentation). The peak in November of 1983 was caused mainly by
the start of a second Interface Report as the test documents were
being finished. The peak shown for February 1984 maps to the User's
Manual effort. Starting in September of 1984 and continuing to
January of 1985, the bars are fairly even. This reflects the
Implementation effort. The increase beginning in February 1985
reflects the addition of one person full time doing documentation
updates and the part time effort of a VAX Analyst during the Rehost
effort.

7.3 AIM PROJECT EFFORTS

The AIM project included several atypical tasks besides those
typically found in the software development process. Table 7-2 shows
these tasks.

The typical tasks have been divided into three groups. Group 1 shows
tasks whose duration is a subset of the project life span. Group 2
shows tasks whose duration covers the entire life span of the
project. Group 3 are those areas discussed in the previous section
that occurred for the most part early in the project (with the
exception of Financial Accounting) though not necessarily restricted
to that period. The logic for this breakdown will become apparent in
the discussion of the models.

Table 7-2 also shows the atypical efforts associated with the AIM.
The Interface Reports (2 interim and I final) are a series of reports
on interface analysis and software engineering techniques. The CAIS
is an ongoing effort to establish a common set of interfaces for all
APSEs. The GAC is a working group to establish transportability
guidelines and conventions. The Rehost effort was time spent porting
the AIM from the DG system to the VAX and back to the DG.

3-308

I

I LIFECYCLE ANALYSIS
AIM PROJECT EFFORTS

I Table 7-2 AIM Software Development Efforts

Group 1: Typical
Atypical

Requirements Definition Interface Reports (3)
System Specification CAIS
Preliminary Design GAC
Detailed Design Rehost
Test Plans and Procedures
Preliminary User's Manual
Implementation
Integration
Formal Testing
Documentation Updates

-Group 2:
Configuration Management (CM)
Quality Assurance (QA)
Program Management (PM)
Data Management (DM)

Group 3:
New Hire
Software Tools
Hardware/Software Problems
Financial AccountingI

Figure 7-3 shows the percentage of time spent on all efforts. Two
pie slices worth special mention are Program Management and CAIS.
These two slices account for 21% of the total labor cost of the AIM.
The CAIS percentage is a result of one engineer devoting the
equivalent of one one full year over the lifetime of the AIM contract
working on the CAIS. The Program Management figure is a result of
the Program Manager taking a very active role in the AIM project. At
the completion of the design phase, the Program Management was
involved in the determination of how to implement the AIM given th
ecurrent state of Ada compilers. The included such options as
securing a validated Ada compiler, coding in a different language, or
postponing till a future date. Once an option was selected (securing
a validated compiler), time was spent extending the contract and
leasing the Data General system.

The interface Reports account for 11% percent of the time. These
reports, however, are considered by most to be the primary
deliverable of the AIM project.

II
3 -309

I

LIFECYCLE ANALYSIS
AIM PROJECT EFFORTS

The totals for Table 7-2 Group 1 efforts are discussed later. The

percentages shown in Figure 7-3 relate to the entire project (through
May 1985) including the non-typical efforts.

3-310

I • ,-- --m,..m.m m mm m i l mm mm I I II

LIFECYCLE ANALYSISI AIM PROJECT EFFORTS

I U ~Requirements Definition (%

USystem Specification (2.2%)

*Preliminary Design (1.5%)

El0 Detailed Design (17.9%)

[I Test Plans/Procedures (5.710)

iPreliminary User's Manuel (3 3.T',

f1Implementation (I15.8,T)

I ~ Integration (1.5%)

3Start her - Formol Testing (.%

SDocumerntation Updates(.)

El~ Program Management (10.3%)

O uality Assurcnce (.a j

U ~ConfijgUration Management (2. 157

SData Mianagerment (.59)

Sinterface Reports 0 1.0%)

UCAIS (10-7-0)

3 GAC~ (un.7%)

Figure 7-3 AIM Project Total Efforts

3-311

LIFECYCLE ANALYSIS
TESTING METHODOLOGY

7.4 TESTING METHODOLOGY

Testing of the AIM was performed in three areas: unit, integration,
and rehost. (Acceptance Testing will be performed at a later date.)
Unit testing was performed by each engineer on the software for which
each was responsible. Test cases and test results were reviewed by

the other team members during code walk-throughs. Code walk-throughs
were performed for all AIM code. Each team member wrote drivers to
test individual areas of responsibility.

After all code was written and tested separately, integration of the
segments was begun. Integration testing was performed using the AIM
System/Integration Test Procedures. Integration testing was repeated
at least four times. A record was kept of the testing results and
distributed to each team member. The member responsible for any
uncovered bugs would fix those bugs and a new round of integration
testing would begin. This process was continued until no bugs were
found. The same method was followed when the AIM was rehosted from
the DG System to the VAX System.

During the Rehost effort, testing was performed mainly through the
use of the VAX debugger. Once the system dependent code was written,
integrated, and debugged, the test procedures were once again
performed. Two new errors were then uncovered. These errors were
fixed and the new code, now resident on the VAX, was rehosted to the
DG. No errors were encountered in this re-Rehost.

7.4.1 Error Correction

Table 7-3 shows the bug, counts and types. Three areas (INFO, HELP,
CLI) were used to identify bugs locations. The INFO and HELP
catagories accurately denote packages where bugs were found. The CLI
catagory is more of a catch-all for not only CLI (Command Language
Interperter) errors but also internal errors for which a clear
mapping was unknown. The table shows two types of errors: Format
and Logic. The Format errors are those where the data presented on
the screen did not match the output specified in the test procedures.
These errors were minor in nature. The Logic errors were those
causing unreliable results and program crashes.

One of the Logic errors found in HELP was a result of transporting
the HELP package to other tools. The other (not really a logic
error) was the addition of one procedure to increase the ease of
transportability.

3-312

I

I LIFECYCLE ANALYSIS
Error Correction

I Table 7-3 AIM Bug Count and Type

I INFO HELP CLI

Format Error
1st Pass 14 3 25
2nd Pass 4 0 6
3rd Pass 0 0 0
4th Pass 0 0 0

Rehost 0 0 0
Re-Rehost 0 0 0

Logic Error
lst Pass 0 0 2
2nd Pass 0 0 2
3rd Pass 0 2 2
4th Pass 0 0 1
Rehost 0 0 2
Re-Rehost 0 0 0

7.5 LINES OF CODE

Lines-of-Code (LOC) is an often used (and controversial) measure of
productivity for software projects. There are three LOC measurements
for the AIM. The first count is the total number of semi-colons in
the source files. This count is 7384 lines. The second count is the
total number of semi-colons and comments (11190), and the third is
the total number of lines in the source files (21059). It should be
obvious why LOC is a controversial measure. Table 7-4 shows
productivity measures for all counts. Each count includes all type
declarations.

Although the semicolon count is an accurate measure of the source
code, the comment lines should not be ignored. Each comment written
(3806 lines) required an initial effort and subsequent update if the

I source code changed.

The third count (total lines) includes statements that span more than
one line but constitute only one instruction. This includes
constructs that, in some cases, contain function calls or expression
evaluations. Blank lines, if any, are also included in the total
line count. Assuming that the blank lines are minimal, this count
could be the most accurate measure of work. Considering that each
If-Then-Else statement, for instance, could span several lines and
contain function calls and expression evaluations, these lines might
represent considerable work.

3
I

3-3 131

LIFECYCLE ANALYSIS

LINES OF CODE

All counts are presented to allow the prefered interpretation of the
reader.

Table 7-4 shows a breakdown of the LOC per day, per month, for the
Group 1 tasks and for the Group 1 combined with Group 2 tasks shown
in Table 7-2. As can be seen, the LOC range from a low of 4.5 per
man-day to a high of 15.8 per man-day. A total with Group 3 included
is not shown because the Group 3 effort included Software Tools for
which an accurate LOC is not available. None of the above figures
include code written for test purposes. A figure for the total
effort is not included because it includes the atypical efforts.

Table 7-4 AIM LOC

7384 Source 11190 Source 21059 Total
& Comments Lines

Day Month Day Mcnth Day Month

Group 1 Only 5.5 120.0 8.4 11.8 15.8 342.2
Group 1 and 2 4.5 96.6 6.8 146.5 12 7 275.6

Unfortunately, there is not enough statistical data available from
Ada projects to support meaningful conclusions on productivity. TI
recently completed four tools for NOSC for which there is data
CTI85H] to compare but the projects were not near the scope of the
AIM. Data from those tools is shown in Table 7-5. Each tcol was the
result of concurrent six month ccnr:racts. The deliverables for each
tool consisted of the source, acceptance test procedures, user's
manual, and technical reports. Time for the technical reports was
not included in the computations shown in Table 7-5. Because of the
limited deliverables and small scope)f the NCSC tools, the Group 1
Only figures in Table 7-4 give the most reasonable comparison.
Still, the Group 1 figures include documentation that was not, for
the most part, required for the NOSC tools.

The "low" figure for the AIM may be attributed to the lack of
experience by all persons participating on the AIM project as well as
the degree of difficulty of the AIM. Conversely, causes for the
higher figures in Table 7-5 for the NOSC tools could be, to some
degree, to

3-314

LIFECYCLE ANALYSIS
LINES OF CODE

o the elevated level of Ada experience attributable to both the AIM
and the increased awareness of Ada in the programming world

o the AIM had numerous tasks whereas, except for in the Virtual
Terminal, the NOSC tools had no tasking

o the NOSC tools where much smaller in scope than the AIM

o the documentation for the NOSC tools was on a much smaller scale
than for the AIM

o the NOSC tools were implemented on the DG system three months
after the AIM implementation had begun thus allowing the NOSC
engineers to draw from the AIM experience

o the degree of reusable software imported into the NOSC tools
which are included in the LOC figures. A Help package developed
for the AIM was imported to the Spell Checker and Style Checker.
This accounted for about 25% of the total code in each of these
programs.

The AIM also imported code but to a lessor degree if measured as a
percentage of the total code. A part of the Virtual Terminal (1805
source lines) was imported from the NOSC tools.

Table 7-5 NOSC Tools LOC

Virtual Spell Style Batch/Forms
Terminal Checker Checker Generator

Source 2421 2743 3189 2869

:OC/MD 11.4 14.5 17.3 16.7
L("IC/LM 246.0 311.0 373.0 359.5

Sourc & Comments 3011 4848 4681 4576

LOC/MD 14.2 25.6 25.5 26.7
LCC/10 306.0 549.7 547.5 573.4

Total Lines 6300 7576 7880 8307

LCC/MD 29.8 40.0 42.9 48.4
LCC/MM 640.2 859.0 921.6 1041.0

I
U

3-315!

LIFECYCLE ANALYSIS
MODEL. COMPARISONS

7.6 MODEL COMPARISONS

There are numerous models available for software projects. Some
models are based on percentages And others are based on man-days or
man-months. In the following discussion, Lifecycle Models are those
that suggest a certain percentage of time for different phases of a
project and Costing Models are those that suggest a certain length of
time. The Lifecycle Models have set percentages that are expected
for the phases of a project. Some degree of variation is allowed in
the percentages. The Costing Models differ in that they predict the
percentage of time that will be spent based on various parameters
entered into the modil. Each of the Costing models shown here is an
interactive tool. Bo.h types of models are intended for use as
guides in the planning phase of a project. This was not the case for
the AIM. Since the models were not used at the beginning of the AIM
project, an attempt has been made to retro-fit the project to each
model. In so doing, a comparison of the AIM is made to historical
studies of software projects. Conclusions drawn from these
comparisons may help predict future projects of the nature of the
AIM.

7.6.1 Lifecycle Models

Lifecycle Models are based on percentages. The percentages vary from
model to model depending, to some degree, on the phases identified
for each model.

The Group 2 and Group 3 efforts shown in Table 7-2 will be combined
and assumed to be evenly distributed for the Lifecycle Models thus
the individual percentages are not changed. The reasoning for this
approach is that these efforts are primarily auxiliary functions and
are not solely attributable to any one phase of a project. The
Atypical efforts have also been eliminated because they would not be
found in the models. Figure 7-4 shows the percentage of effort for
the Group 1 efforts only.

3-316

U

1LIFECYCLE AAYI
Lifecycle Models

UP~qlwrerent,, Defintion

In"
(3.9 9

SPreliminary De-i'gn
(2.7,U

D Cetailed Deoiqn (31.4,1)

0Test Plans/ProceduresI (9.9%)
SPreliminary Uiser's

Manual (5.3%)

0M Implementation (27.7%)

SIntegration (2.6S)I Formal Testing (3,5"9)

M Documentation U~pdates
(6%K)

1 Figure 7-4 Typical Project Efforts

7.6.1.1 40-20-40 Model

I The 40-20-40 Model (PRES82I is a very simple model dividing a project
into three phases: Design 40%, Coding 20%, Testing 40%. This model
is shown in Figure 7-5. The 40-20-40 Model places heavy emphasis onI design and testing and very little on coding. in order to compare
the AIM to the model, the Group I efforts must be divided into the
three phases identified in the 40-20-40 model. This is done in Table
7-6. This catagorization is consistent with EPRES82I and (DEMA79].I The reason for including the Test Plans and Procedures in the Design
Efforts is to ensure that during Design the proper attention is
giving to testing. Both testing and detailed design proceed from the

3-317

LIFECYCLE ANALYSIS
40-20-40 Model

Preliminary Design Specification. As requirements are designed into
the program, tests against that design are written. These tests
become the Test Procedures. The Test Plan must procede the Test
Procedures. A Preliminary User's Manual is written to ensure that
the user's viewpoint is considered during the design effort.

The inclusion of these efforts reflects the actual time frame for the
AIM as well as the previously suggested time frame. (i.e., test
documentation was done in parallel with design as opposed to being
done later with the time then added to the design effort.)
Documentation Updates are those efforts required to complete the
User's Manual and to update the Test Procedures. The procedures were
updated to reflect design changes that occured since the previous
release of the test document. The update effort was included in the
testing efforts because the changes to the documents was driven by
the testing of the AIM against the Test Procedures and against the
User's Manual Tutorial.

Note that the Testing Phase is considerably under and that the Design
Phase is considerably over what the 40-20-40 model suggests. This
will hold true for all models. The Coding Phase 4iffers from what
the model suggest but by a smaller percentage. Explanations for
these variances will be presented in the conclusions section.

Figure 7-6 shows the resulting comparison for the AIM.

Table 7-6 40-20-40 Mapping

40-20-40 AIM

Design Efforts Requirements Definition
System Specification
Preliminary Design
Detailed Design
Test Plans and Procedures
Preliminary User's Manual

Coding Efforts Implementation

Testing Efforts Integration
Formal Testing
Documentation Updates

3-318

U LIFECYCLE ANALYSIS
40-20-40 model

Iea h~ 4,0
Codin

3. T esting Phse (40%)

UCoding Phae (2 %)

STesting Phase (406%)

Figure 7- I s 40-20-40 Model

3I1

LIFECYCLE ANALYSIS
Brooks Model

7.6.1.2 Brooks Model

The Brooks Model [BR0079] shown in Figure 7-7 differs from the
40-20-40 model only slightly. This model is the "rule of thumb" used
by Frederick P. Brooks for scheduling a software task. The primary
difference in the models is in the weight given to the-Testing Phase
in the Brooks Model. Table 7-7 shows the new mapping. The
conversion from Table 7-6 to Table 7-7, reflects calling the Design
Phase the Planning Phase and dividing the Testing Phase so that
Integration Testing maps to Brooks' Test Phase. The rest remains the
same. The result is shown in Figure 7-8. Again, the Testing Phases
and the Design (or Planing) Phase are extremely off the model figures
and the Coding Phase is higher.

Table 7-7 Brooks Mapping

Brooks AIM

Planning Efforts Requirements Definition
System Specification
Preliminary Design
Detailed Design
Test Plans and Procedures
Preliminary User's Manual

Coding Efforts Implementation

Testing Efforts Integration

System Test Efforts Formal Testing
Documentation Updates

3-320

LI FECYCLE ANALYS IS
Brooks Model

Coi P1nhae (%)

*Testing Phase ('25%)

3 ED Test System Phs~e (25%)

Figure 7-7 Brooks Model

PI a1n P hite (65 7',1)

3 UCoding Phate (.27 7 1)

*Testing Phase (2.6%1)

3 C rst ystem Phase (4 IX)

Figure 7-8 AIM vs. Brooks Model

3-321

LIFECYCLE ANAIYSIS
GTE Model

7.6.1.3 GTE Model

The last Lifecycle Model is the GTE Model [DALY77]. This model is
shown in Figure 7-9. The GTE Model is divided into more phases than
the previous models. Table 7-8 shows the GTE mapping. The following
alterations have been made: Map the Requirements Definition tc the
Plan Phase of the GTE Model, map the System Specification to the
Specifications Phase, map the rest of the Design catagory to the
Design Phase, and split the testing as was done for the Brooks Model.
The AIM then compares to the GTE Model as shown in Figure 7-10. Here
again the Testing and Design Phases of the AIM are not consistent
with the model. If the Plan and the Specification Phases are
combined in the GTE Model and the AIM comparison, the two do not
differ significantly but the Design, Coding, and Testing Phases show
the same disparity as the other models.

Table 7-8 GTE Mapping

GTE AIM

Planning Efforts Requirements Definition

Requirement Effort System Specification

Design Effort Preliminary Design
Detailed Design
Test Plans and Procedures
Preliminary User's Manual

Coding Efforts Implementation

Testing Efforts Integration

System Test Efforts Formal Testing
Documentation Updates

3-322

LIFECYCLE ANALYSIS
GTE model

*Specification Ph8-se K

SDesign Phase (40,,%)

CodeaP ha-e (1 -%)

C Test Phwase (2,5,%)

SSuztem Test Phase (1 0)

3 Figure 7-9 GTE Model

I r44

5 U ~Plan Ph.3e(1.)

* pecification Phase

SDev qgn P h-j-e \49.9A)

OCode Phase 2 %

C1 Test Phsse (.%
G S3stem Test Phase (4.1<%)

Figure 7-10 AIX vs. GTE Model

3-323

LIFECYCLE ANALYSIS
Costing Models

7.6.2 Costing Models

The Costing Models presented here predict the cost of a project.
This cost can be computed in dollars, man-days, man-months, or
duration depending on the model. Dollars are not used here to
eliminate confusion that might arise from differences in the costing
structure of different companies. Each of the following model
discussions contains a table of the Typical Efforts from Table 7-2
that were used in the computations. As with the Lifecycle Models,
these efforts vary from model to model.

7.6.2.1 SoftCost

The SoftCost Model [TI85G] is based on research conducted by the Jet
Propulsion Laboratory in Pasadena, California (TAUS8I]. This tool is
used to help predict software cost in man-days and to project
schedules for the different phases of the project. The AIM project
data was entered into the model after the Testing phase was complete.
The relevent data gathered from the model is the -rojec:ed man-days
for each phase of the project. Table 7-9 shows the mapc-ng of the
AIM Efforts used in this model to the efforts predicted 0y the model.
For this model, the Group 2 and Group 3 efforts have been combined
and proportionately distributed across the phases.

The SoftCost Model predicts effort based on the assumptior that these
efforts do take place to some degree in each of the phases of the
project. For instance, Quality Assurance is assumed to occur during
design, coding, and testing. Figure 7-11 shows the comparison of the
actual AIM effort to the effort predicted by the SoftCost Model.

As with the Lifecycle Models, the SoftCost Model differs from the AIM
in the areas of Design, Coding and Testing. Note that no entry was
made for the AIM in the Initiation Phase but that if the first two
phases are added for the AIM and the model, the results are very near
the same. The SoftCost Model indicates that more time was expected
in tne Programming (Coding) Phase as opposed to the Lifecycle Models
which predict a smaller percentage for coding than shown for the AIM.

3-324

I rLI FECYCLE ANALYSIS
SoftCost

Table 7-9 SoftCost Mapping

I SoftCost AIM

Initiation Phase

Definition Phase Requi.ements Definition
System Specification

Design Phase Preliminary Design
Detailed Design
Test Plans/Procedures
User's Manual
Document Updates

Programming Phase Implementation
Integration

System Test Phase Formal Testing

!
300o - •AIM

300 - $oftCust

D00
I0I __ __ __ __ __ __ __-_

I00

initiation Definition Design Programminq System TestI
Figure 7-11 SoftCost Model Comparison (Man-Days)

3
1 3-325

LIFECYCLE ANALYSIS
Price-S

7.6.2.2 Price-S

The Price-S Model rFRIE79] is a parametric cost-modeling method. It
is an interactive model that allows the user to customize the input.
The model computes duration of effort (not man-months) based on the
maximum manload and cost per month for the three phases: Design,
Implementation, Integration and Testing. Price-S assumes that all
efforts prior to Design have been completed and excludes them. Also,
the model expects a continuum of effort. In order to compare the
AIM, the months of no activity (Summer 1984) and the months in which
no activity for the specified phases took place, (October 1982 -
January 1983, October 1983 - December 1983) were removed (See Figure
7-1). The resulting time span was 22 months covering February 1983
through November 1984. The mapping of the AIM project to the Price-S
model is shown in Table 7-10.

Figure 7-12 shows the comparison of the AIM to Price-S. The
comparison shows each effort as a percentage of the total months. As
with all previous models, Design is over and Tes: ng :s under; the
predicted figures for the AIM. Also, for the fi:st t.e, there is a
large discrepancy in the Implementation Phase.

Table 7-10 Price-S Mapping

Price-S AIM

Design Preliminary Design
Detailed Design

Implementation Implementa:ion

Integration and Testing Integration
Formal Testing

3II
I
!

3-326

a a a a- I lI

I
LIFECYCLE ANALYSISi Price-S

60 AIM

* ~30__ _
II

10

50 i

Desin I mplementstlon I ntegration/Testi ng

I Figure 1-12 Price-S Comparison (Percent of Actuil Months)

1 7.6.2.3 COCOMO

The COnstructive COst MOdel (COCOMO) rBOEH8lI estimates the number of
man-months required to develop lines of source code for a software
product. Comment lines are excluded from the source code line count.
The COCOMO Model covers the period starting with the Design Phase
(after requirements acceptance) and continues through the test phase.
However, given that the project was complete and the LOC known, the
model can estimate the time spent during the planning and requirement
specification phases. Excluded from the estimate are charges for
training, accounting, software tools, and test drivers. The COCOMO
Model assumes that Quality Assurance, Configuration Management, Test
Planning, and manual writing are evenly distributed across all5 phases. Table 7-11 shows the AIM to COCOMO mapping.

Figure 7-13 shows the comparison of the AIM to the COCOMO prediction.
The COCOMO Model gives results similar to the Lifecycle Models except
in the Programming (Coding) Phase. Like the Price-S Model, the
COCOMO Model shows a large discrepancy in predicted coding time. The
COCOMO Model prediction, however, differs in the opposite direction.

3
I 3-327

:AFTCYCLE ANALYSIS

COCCMO

Table 7-11 COCOMO Mapping

COCOMO AIM

Plans and 'iequirements Requirements Definition
System Specification

Design Phase Preliminary Design
Detailed Design

Programming Phase Implementation

Testing Phase I nteg rat ion

Formal Test

30 -NAIM

40

30

01
PlanV/Requirement Oeviqn Proqrammi nq Testi nq

Figure 7-13 CCCCMO Comrparison (man-Months)

3-328

I LIFECYCLE ANALYS7S
CONCLUS 1:O;S

S7.7 CONCLUSIONS

Thc conclusions drawn from the information contained herein are
divided into the following catagories:

o Design Effort

o Implementation Effort

So Testing Effort

o LOCI
In the dicussion that follows, bear in mind that each model has
slightly different groupings for the phases of a software project.
The data from each model will be presented as percentages to allow
for a common ground of comparison. Percentages that vary only
slightly from model to model may be attributed to grouping
differences. This is not an attempt to compare the models presented
herein. Two types of models, and several of each, were used to
provide reliable data from which conclusions could be drawn.

7.7.1 Design Effort

The Design effort for the AIM was much higher than what the models
predict. Table 7-12 summarizes the models. The Costing Models
results have been converted to percentages for ease of comparison.
The table shows the AIM varying from nearly 10% to about 33% higher
than the models for des;-n. Se-'eral factors contributed to this high
ratio. The requirements written for the AM were reviewed by every
member of the AIM during the first year of the project. Because the
requirements for the program were defined by the designers f the

AIM, there was a lot of redefinition and updating As the design
progressed, a requirements cross-reference was kept. The
cross-reference mapped each requirement to the corresponding
procedure in the design dccument that fullfilled that require~ient.

:n parallel to the writing of the desicn document, the test documents

o Acceptance Test Plan

5 o Acceptance Test Procedures

3
I

I
II

LIFECYCLE ANALYSIS
Design Effort

o Computer Program Test Specification

o System/Integration Test Plan

o System/Integration Test Procedures

and a preliminary user's manual were writtekl.

Table 1-12 Summary of AIM vs. Models

40-20-40 Brooks GTE Softcost Price-S COCOMO
% % M-D % M-M

Plan:

AIM 0.0 0.0 11.9 0.0 0.0 0.0
Model 0.0 0.0 2.0 2.5 0.0 2.0

Specification:

AIM 0.0 0.0 3.9 15.8 0.0 18.9
Model 0.0 0.0 8.0 10.5 0.0 7.0

Design:

AIM 65.7 65.7 49.9 49.8 34.8 40.8
Model 40.0 33.0 40.0 27.0 23.5 17.0

Implementation:

AIM 27.7 27.7 27.7 27.7 52.2 33.1
Model 20.3 17.0 15.0 36.0 28.5 58.2

Testing:

AIM 6.6 6.7 6.7 6.6 13.0 7.2
Model 40.0 50.0 35.0 24.0 43.1 24.8

Writing the te .t documents requLred considerable time but helped
clarify a&d refine each requirement. The preliminary user's manual
al.so helped clarify the requirements by forcing the designers into a

3-330

I

I JIFECYCLE ANALYSIS
Design Effort

user's viewpoint of the tool. The net result of writing these
documents was a very clearly defined set of requirements and an
unambiguous understanding of the desired tool by all engineers
involved.

The AIM design team also used a new approach to design. This new
method, Object Oriented Design, [BOO83] required time for each member
to grasp individually, and as a consolidated group, as applied to the
AIM. Each of these causes contributed to a prolonged design effort.

In addition, the complexity of the tool itself (windowing, tasking,
sub-process management) and the Ada language extended the design
effort.

7.7.2 Implementation Effort

Each of the Lifecycle Models predicted a shorter Implementation
(Coding) Effort than was the actual case. These differences were
considered within a reasonable range. The Cost Model predictions
vary. The SoftCost Model, like the Lifecycle Models, has an
acceptable variance. The SoftCost Model does, however, differ in the
opposite dir,.ction. The Price-S and COCOMO Models not only are
considerably off, the predictions are almost inverted! No reasonable
explanation can be given for the wide discrepency of these two3 models. All other models are within reason.

7.7.3 Testing Effort

5 Refering to Table 7-12 again, notice that the Testing effort was much
lower than any of the models suggest as appropriate. Possibly the
best explanation for this is code walk-throuchs. During
Implementation each engineer was required to schedule a code
walk-through complete with test cases and results. This meant that
all code was thoroughly tested at the unit level and double checked
by fellow engineers. If unit testing had been separately tracked,
including time spent in code walk-throughs, an increase of over 17%
in testing would be necessary before the AIM matched any of the model
predictions.

3 To facilitate the unit testing, an interactive source level debugger
was used on both the DG and the VAX. The debugger decreased both
time required to locate bugs and the number of drivers necessary to
test the code. The importance of good tools cannot be over
emphasized! The end result was fewer bugs and less time spent in the
testing effort.

Another contributing factor to the low testing figures is the amount
of time spent in design. The more quality time spent in design, the
fewer the bugs that will exist. As mentioned previously, a great

3

3-331

LIFECYCLE ANALYSIS
Testing Effort

deal of effort was put in defining requirements, writing test
documentation, and preparing a preliminary user's manual. Each of
these reduced the number of potential errors, thus reducing the
amount of time spent in testing.

The testing of the AIM did not include extensive detail such as doing
memory dumps after each line of code was executed.

7.7.4 LOC

The AIM project was written in a new language that most will agree is
more complicated yet more versatile than many of the more popular
languages in use today. Ada is still in its infancy two and a half
years after the AIM project was begun. The base of expertise
required to achieve high measures of LOC has only started to
accumulate.

This is one of the reasons one might conjecture as the cause for the
"low" LOC count for the AIM. More specific to tne AIM is the
original purpose of the project. The intent was to investigate APSE
interface issues and for this reason the design of the AIM had to be
general enough to allow the AIM to operate in any potential APSE.
Unfortunately, no APSE existed at the time the AIM was designed.
Initially, time was spent investigating operating systems interfaces
to get a feel for what to expect. A new direction was then chosen.
Ratter than anticipating what would exist, a tool was designed that
would require extensive interfaces to any system on which it was
installed. The result was an abnormal amount of design work for the
resultant code. Since the LOC figure is computed over the entire
lifecycle, this contributed to a low LOC. 7

7.7.5 Wrap-Up

The AIM was designed for transportability and was in fact rehosted
from the DG to a VAX with a minimum of effort. In a one month period
(2.4 man-months), the AIM was rehosted. This time included the
writing of the system dependent code and execution of the
System/Integration Test Procedures twice. As previously mentioned,
only two bugs were found as a result of the rehost. Most of the
Rehost time was spent gaining an understanding of the VAX internals.
The AIM is a portable tool with localized system dependent code. The
unde.standing of the internals of the host system is the hardest part
of porting the AIM.

The Lifecycle Analysis of any project is filled with assumptions,
unique situations, and various interpretations. LOC Pstimates and
model comparisons are filled with pitfalls. Hopefull- nis report
has presented enough data to allow the reader to r iy understand
the conclusions presented here but also facilitdce in the predictions

3-332

I
L.IFECYCLZ ANALYSrS

.Jrap-Up

and estimations of future projects.

I
I
I
I
I
I
I
I
I
1
I
I
I
I
I

3-333

I

3-334

I
I
I
I
I

CHAPTER 8

3! DIDS

I 8.1 PURPOSE

This section of the Interface Report is concerned with the problems
encountered in using the contract specified DIDs for the AIM
deliverables.

* 8.2 OVERVIEW

The deliverables were completed in the same order as presented below.
Requirements, testing, and terminology will be covered.

The following documents and associated DIDs are discussed:

Program Performance Specification(PPS) Government DID # DI-E-2136A

Acceptance Test Plan(ATP) Government DID # DI-T-2142

Computer Program Test Specification(CPTS) Government DID # DI-E-2143

Acceptance Test Procedures(ATPRO) Government DID # DI-T-2144

Program Design Specification(PDS) Government DID # DI-E-2138

3 System/Iitegratior Test Plan(SITP) Government DID # DI-T-2142

System/Integration Test Procedures(SITPRO) Government DID # DI-T-2144

3I
I

A 3-335

DIDS
PROGRAM PERFORMANCE SPECIFICATION (PPS)

8.3 PROGRAM PERFORMANCE SPECIFICATION (PPS)

8.3.1 Requirements

The PPS defines the requirements and the types of testing that are
required for the system. The requirements were divided into four
groups:

1. acceptance,

2. performance,

3. host, and

4. requirements on other tools.

The latter two categories were special cases :L: -he AIM tool and are
not relevant to this discussion. The PPS DID ioes not prescribe a
method or rules to follow in determining a Performance :r Acceptance
requirement. The PPS does, however, state that :ne Acceptance
requirements are a subset of the Performance requirements.

The Performance requirements were derived from the text of the PPS.
Lacking guidelines for determining requirements, we developed our
own. Any statement of action to be performed by the program or the
internals of the program modules was called a Performance
requirement. Those Performance requirements that could be
demonstrated (i.e. results are visible to the user) in the host
environment by the completed program were classified as Acceptance
requirements.

8.3.2 Testing

The Quality Assurance section of the PPS DID mentions fcLr levels of
testing that may be performed:

1. subprogram,

2. program,

3. integration, and

3-336

3 DIDS
Testing

1 4. acceptance.

SExcept for acceptance, these levelz are discussed in MIL-STD-1679.
Acceptance testing is discussed in the PPS DID. Program testing is
referred to as Program Performance testing and integration testing is
referred to as System(s) Integration testing in MIL-STD-1679.
Subprogram testing is referred to as subprogram testing in both.

Acceptance testing is performed to show that the Acceptance
requirements have been met. Subprogram and program testing are
performed to show that the Performance requirements have been met.
Integration testing is performed when the developed program is an
element of a larger system involving the integration of two or more
programs. Integration testing verifies that the interfaces with the
other system programs have been met.

The following shows the types of testing required and the
corresponding nomenclature used by each government document:

3 NOSC Deliverable PPS MIL-STD-1679

none none Module
none Subprogram Subprogram
System/Integration Program Program Performancenone Integration System(s) IntegrationAcceptance Acceptance none

I Note in the above that there are no required deliverables for module
and subprogram testing. Also, note that NOSC's System/Integration
maps to program performance testing and not integration testing. The
AIM, although used in a larger system (the APSE), is an independent
tool and therefore requires no integration testing as defined in
MIL-STD-1679. Acceptance testing will ensure that the AIM works in

I its intended environment.

As a last note on the PPS, the DID used in writing the PPS refers to
"the combat system" which indicates that the DID is more oriented
toward embedded weapon systems as opposed to software environmentsand tools.

8.4 ACCEPTANCE TEST PLAN (ATP)

The only problem dealing with the DID in writing the ATP was that the
DID is a general purpose outline for writing any type of test plan.
The same DID was used for writing both the Acceptance Test Plan and
the System/Integration Test Plan. The description of the ATP is

3

i 3-337

DIDS
ACCEPTANCE TEST PLAN (ATP)

simple enough until considered with the descriptions of all the other
test document DIDs. After reading them all, it becomes difficult to I
distinguish were one stops and the next starts.

8.5 COMPUTER PROGRAM TEST SPECIFICATION (CPTS) 3
The DID for the CPTS calls for a two-part document. The first part
is called the System test. The System test addresses the complete
system operation and interface. The second section is called the
Function Test. The Function Test is concerned with testing the
individual parts of the program. The CPTS outlined the tests to be I
developed in the test procedures. Although not clearly stated as
such, the System tests corresponded to testing the Acceptance
requirements and the Function tests corresponded to testing the
Performance requirements. The tests outlined in the Function Tests
section later become the System/Integration Test Procedures. The
CPTS DID does not give a good feeling for the level of explanation
expected for the tests described here. It wai difficult determining
the differences between the Function Tests of the CPTS and the
System/Integration Test Procedures. Therefore, the tests in the CPTS
were used as an outline for the test procedures. I
8.6 ACCEPTANCE TEST PROCEDURES (ATPRO)

As mentioned in the above, the ATP and SITP used the same DID. The I
DID used for the ATPRO and SITPRO is also the same. Not only was it
difficult to determine the differences in the two 7ets of test
procedures, but the distinction between the descriptions of the t.st
plan, the test specification, and the test procedures makes it een
more difficul: to determine.

8.7 PROGRAM DESIGN SPECIFICATION (PDS) 5
The PDS DID calls for a cross reference matrix of the performance
requirements defined in the PPS to the paragraph in the PDS where
that requirement is satisfied. The paragraph numbers were not used
because throughout the development of the PDS these numbers were
changing. Since only manual means were available to change the I
numbers, the routine name was substituted in place of the paragraph

number. By using the table of contents, the actual page number could
be determined. It was felt that this substitution would be more
meaningful, more cost effective, and more prone to stay correct over
time.

I
I

3-328 I

I

I

5 DIDS
SYSTEM/INTEGRATION TEST PLAN (SITP) AND PROCEDURES (SITPRO)

1 8.8 SYSTEM/INTEGRATION TEST PLAN (SITP) AND PROCEDURES (SITPRO)

3 By the time the SITP/SITRPO was written the distinction between the
DIDs had been determined. There were no further problems encountered
with the test deliverables.

3 8.9 SUMMARY

3 The DIDs used for the AIM project were sometimes vague and confusing.
The testing required was not precisely defined. There was neither a
method given for defining performance and acceptance requirements or3 a definition of performance and acceptance requirements.

The same DID was used to write the ATP and the SITP. Since there was
no distinction made between the two, it was, at times, difficult to
determine the differences between them. This DID was not written
specifically for the purpose of writing Acceptance Test Plans (or
System/Integration Test Plans) but rather for writing any test plans.
The same problem uccured with the DID used in writing the Acceptance
and the System/Integration test procedures.

The CPTS DID calls for two parts: System Tests and Function Tests.
These terms were not used in any of the other test documents. This
caused some confusion as to the relationship of these parts to the
test plans and procedures. The assumption was made that the System
Tests were related to the Acceptance Tests and that the Function
Tests were related to the System/Integration Tests.

3- 3
I

I
I
I
I
i 3-339

3-340

I
I
I
I

I APPENDIX A

3 GLOSSARY

I ADE
Ada evelopment Environment3 Al_E
Ada Integrated Environment

I AIM
A APSE Interactive Monitor

i ALS Ada Language System

AOS/VS
Advanced Operating System/Virtual Storage, a Data General
Corporation operating system for the ECLIPSE MV/Family of
machines.

IAPSE Ada Programming Support Environment
APSE program

A program that can be executed in the hosting APSE and uses only
KAPSE supDlied services to perform its function.

CAIS Common APSE Int.erface Set, the KIT/KITIA effort to standardize
certain KAPSE interfaces.

CAISWG
Common APSE Interface Set Working Group, a working group within
the KIT/KITIA effort.

I
I
I

i 3-341

GLOSSARY

character
A member of a set of elements that is used for the organization,
c-introl, or represertation of data.

character echo
The act of re-transmitting a cnaracter immediately upon receipt
of it back to the entity that originally transmitted it.

character imaging deviceA device that s a visual representation of data in the form

of graphic symbols using any technology, such as cathode ray
tube or printer.

character stream
An unbounded sequence of ASCII characters.

character string
A bounded sequence of ASCII characters.

command scriot
A database file containing commands to the AIM command
interpreter. The command interpreter reads commands from the
command script rather than prompting the user interactively.

critical recion
A section of code in a process (Ada task) wh ch, when executed,
is guaranteed mutually exclusive access to shared data.

database file
A standard file in the APSE database.

DG
Data General

disolav
The area for visual presentation of data on a character imaging
device.

displav terminal
A data communications device composed of a keyboard and a
d isplay screen 'usually a cathcde ray tube).

EDT
An interactive full-screen editor supported by DEC on the VAX
machine.

3-342

I
3 GLOSSARY

3 environment-dependent
Using features which are unique to a specific Ada Program
Support Environment (such as ALS or AIE).

* erroneous
An Ada program which does not conform to the requirements of an
APSE program. The program might execute correctly within an
APSE in a given situation, but the program may not be considered
entirely reliable. An APSE program must use only KAPSE
services; any other services (such as host services) result in3 an erroneous program.

exclusive access
Control of a file (or, the terminal, in this case) which
prohibits any other program besides the AIM from writing to the
terminal screen.

host services
Facilities provided by the operating system of the host machine
underlying the KAPSE.

imageAn analog of the physical display device. The image is the
entity that is mapped onto the display. Given a number of user
defined images, only one at a time can be mapped onto the
display. The rest exist and are updated asynchronously but are
not mapped onto the display until the user requests it.

interface
The place at which independent systems meet and act on or
communicate with each other.

I~I PCIP Interprocess communication.

KAPSEI-Kernel Ada Programing Support Environment.
keyboard

The physical input device.

KIT
KITIAKAPSE Interface Team.

KAPSE Interface Team from Industry and Academia.

3

3-343

I w l i i i N I I I -

GLOSSARY

LALR
Lookahead Left to Right; a method for parsing grammars.

line
A set of adjacent character positions in a visual display that
have the same vertical position.

mapoings
The relationships managed by the AIM connecting logical
representations of windows, images, and viewports to physical
representations on a display device.

MIL-STD
Military Standard.

node
Pertaining to the KAPSE database, either a file or a directory
in the tree-structured database.

NOSC
Naval Ocean Systems Center

pad
Two files which contain a complete history of window activity
that transpires from the beginning of pad mode until it is
terminated by the user or the window is destroyed. One pad, the
INPUT pad, includes the input to the APSE program from the user
through the keyboard. The other pad, the OUTPUT pad, logs the
output to the display from the AIM and any program initiated by
the AIM.

Paqe mode terminal
A screen-oriented display device which posesses extended
two-dimensional functional capabilities. Characters are
transmitted and received one at a time.

o i2e
A logical connection between an output file of one program and
an input file of another program.

screen
The area for visual presentation of data on any type of
character imaging device, including printer and cathode ray tube
device.

3-344

I GLOSSARY

3 STANDARD IN and STANDARD OUT
Input and output files defined in the package TEXT_10. For AIM
purposes, these must be the only files used for terminal I/O,I task

An Ada program unit that operates in parallel with other program
units.

terminal
A data communications device consisting of a keyboard and a3 character imaging device.

Terminal Caoabilities File
A tile which descF-es common terminal functions in terms of3 device-specific control sequences, for many different terminals.

terminal communication protocols
Sequences of characters in which the relationships between
specific characters are given meanings for different types of
terminals.

transmit
To send data as a data stream for purposes of informationintercliange.

user terminal
The teriiinal with which a user interacts in order to communicate
with an APSE program.

5 VMS
Virtual Memory System, the DEC operating system for the VAX
11-780.

viewport
The portion of the window displayed in the image.

I viewoort header

A single highlighted line located at the top of a viewport.

window
An analog of the APSE program's view of the terminal.

3

I
3-345

3-346

I
I
I
I

APPENDIX B

REFERENCES

3 B.1 GOVERNMENT STANDARDS

The following documents of the exact issue shown form a part of this
specification to the extent specified herein. In the event of
conflict between the documents referenced herein and the contents of
this specifiration, the contents of this specification shall be3 considered a superceding requirement.

[DOD80] United States Department of Defense, "Requirements for Ada
Programming Support Environments" ("STONEMAN"), February
1980.

[DOD83 I United States Department of Defense, "Reference Manual for
the Ada Programming Language, ANSI/MIL-STD-1815A-1983,"
February 17, 1983.

EDID73 I Data Item Description, "Informal Technical Information,3 DI-S-30593," March 73.

B.2 GOVERNMENT SPECIFICATIONS

The following documents of tha exact issue shown form a part of this
specification to the extent specified herein. In the event of
conflict between the document referenced herein and the contents of
this specification, the contents of this specification shall be
considered a superceding requirement.

lINT82] Intermetrics Inc., "IR-678-l Computer Program Development
Specification for Ada Integrated Environment:
KAPSE/Database Type B5," Wakefield, MA, November 1982.

[KIT83 I KAPSE Interface Team (Ada Joint Program Office), "Common3 APSE Interface Set," Version 1.1, September 1983.

3-347

REFFRENCES
GOVERNMENT SPECIFICATIONS

[KIT85 I KAPSE Interface Team (Ada Joint Program Office), "Proposed
Military Standard Common APSE Interface Set (CAIS),"
January, 1985.

[SOF82 J SofTech Inc., Ada Problem Report 602, Waltham, MA,
November 1982.

[SOF83] SofTech Inc., "Draft Ada Language System Specification,"
Waltham, MA, November 28, 1983

B.3 OTHER GOVERNMENT DOCUMENTS

The following documents of the latest issue per date oZ this report
form a part of this specification.

[T182 I Texas Instruments, Advanced Computer Systemt Laboratory,
"Proposal for Development of Ada Softwar- Tools and
Interface Standards," Lewisville, TX, February 1982.

[TI83A I Texas Instruments, "APSE Interactive Monitor (AIM) Program
Performance Specification (PPS)." Contract
N66001-82-C-0440, 19 September 1983.

[TI83B I Texas Instruments, "APSE Interactive Monitor (AIM) Software
Development Plan (SDP)," Contract N66001-82-C-0440, 10 July
1983.

[TI83C] Texas Instruments, "APSE :nteractive Monitor (AIM)
System/Integration Test Plan (SITP)," Contract
N66001-82-C-0440, 23 December 1983.

[TI83D I Texas Instruments, "APSE Interactive Monitor (AIM) Software
Quality Assurance Plan (QA)," Contract N66001-82-C-0440, 28
March 1983.

CT183E I Texas Instruments, "APSE Interactive Monitor (AIM) Computer
Program Test Specification (CPTS)," Contract
N66001-82-C-0440, 15 September 1983.

[TI83F J Texas Instruments, "APSE Interactive Monitor (AIM)
Configuration Management Plan (cM)," Contract
N66001-82-C-0440, 28 March 1983.

[T!83G] Texas Instruments, "Interim Report on Interface Analysis
and Software Engineering Techniques," Contract
N66001-82-C-0440, May 1983.

3-348

REFERENCES3 OTHER GOVERNMENT DOCUMENTS

[TI83H] Texas Instruments, "Interim Report on Interface Analysis
and Software Engineering Techniques," Contract
N66001-82-C-0440, December 1983.

[TI85A] Texas Instruments, "APSE Interactive Monitor (AIM) User's
Manual (UM)," Contract N66001-82-C-0440, July 1985.

[TI85B I Texas Instruments, "APSE Interactive Monitor kAIM) Program
Design Specification (PDS)," Contract N66001-82-C-0440,
July 1985.

[TI85C I Texas Instruments, "APSE Interactive Monitor (AIM)
System/Integration Test Procedures (SITPRO)," Contract
N66001-82-C-0440, July 1985.

[TI85D] Texas Instruments, "CAIS Rationale," Contract
N66001-82-C-0440, July 1985.

[TI85E I Texas Instruments, "Transportability Guide," Contract
N66001-82-C-0440, July 1985.

[TI85F 1 Texas Instruments, "Installation and Maintenance Guide for
the APSE Interactive Monitor (AIM)," Contract
N66001-82-C-0440, July 1985.

[T1851 I Texas Instruments, "APSE Interactive Monitor (AIM)
Acceptance Test Plan (ATP)," Contract N66001-82-C-0440,
July 1985.

[T.:35J] Texas Instruments, "APSE Interactive Monitor (AIM)
Acceptance Test Procedures (ATPRO)," Contract
N66001-82-C-0440, July 1985.

B.4 SPECIAL SOURCES

[TT83] Verbal communications with Tucker Taft of Intermetrics,
Inc., Jan 26, 1983 at the San Diego KIT meeting.

[TT83A] Verbal communications with Tucker Taft of Intermetrics,
Inc., April 21, 1983 at the Willow Grove, PA KIT meeting.

[RT83] Verbal communications with Rich Thall of SofTech, Inc., Jan3 26, 1983 at the San Diego KIT meeting.

i
I
1 3-349

I
REFERENCES
SPECIAL SOURCES i

[RT83A] Verbal communications with Rich Thall of SofTech, inc.,
April 20, 1983 at the Willow Grove, PA KIT meeting.

B.5 OTHER PUBLICATIONS 5
[ABB82] Abbott, Russell J., "Program Design by Informal English

Descriptions," Unpublished.

r KIN81] Akin, T. Allen, "Virtual Terminal Handler Preliminary Quick

Reference," School of Information and Computer Science,
Georgia Institute of Technology, April 1981. I

[ANSI73] American National Standards Institute, "American National
Standard Graphic Representation of the Control Characters I
of American National Standard Code for Information

Interchange (ANSI Standard X3.32-1973)," July 1973.

[ANS177] American National Standards Institutp, " q.erican National I
Standard Code for Information Interchange (ANSI Standard
X3.4-1977)," June 1977. U

[ANSI791 American National Standards Institute, "American National
Standard Additional Controls for Use with American National
Standard Code for Information Interchange (ANSI Standard
X3.64-1979)," July 1979.

lAPSE821 "Working Paper: Ada Programming Support Environment (APSE)
Requirements for Interoperability and Transportability and
Design Criteria for Standard Interface Specifications," Not
Appzoved, October 1982.

[BOEH8l] Boehm, Barry W., Software Encineering Econo ics, 3
Prentice-Hall, Englewood Cliffs, N.J., 1931.

[BOC83] Booch, Grady., Software Enaineering with Ada, Benjamin
Cummings Publishing Company, Menlo Park, CA., Copyright
1983.

1B0R85 Borger, Mark W., "Software Design Issues in Ada," Journal n
of Pascal, Ada, and Modula2, Volume 3, Number 3,
M-arch-April 1985.

[BRCO791 Brooks, Fred ick P., The Mythical Man-Month, I
Addison-Wesley, Reading, Mass., 1979.

I
3

3-350 1

I

5REFERENCES
OTHER PUBLICATIONS

3BUH84] 3uhr, R. J. A., System Desin with Ada, Prentice-Hall,
Inc., 1984.

[COX83] Cox, Fred, "KAPSE Support for Program/Terminal
Interaction," Working Paper for KITIA/ Working Group 1,
February 1983.

[CSC82A] Computer Sciences Corporation, "Configuration Management
System Program Performance Specification (Draft)," Falls
Church, VA, August 1982. Prepared for Naval Ocean Systems3 Center under contract N00123-80-D-0364.

[CSC82B] Computer Sciences Corporation, "Configuration Management
System Interim Report on Interface Analysis," Falls Church,
VA, August 1982. Prepared for Naval Ocean Systems Center
under contract N00123-80-D-0364.

[DALY77] Daly, Edmund B., "Management of Software Development," IEEE
Transactions on Software Engineering, May 1977.

[DAT83A] Data General Corporation, "Advanced Operating
System/Virtual Storage (AOS/VS) Programmer's Manual Volume
1 System Concepts," Westborough, Massachusetts, March 1983.

[DAT33B] Data General Corporation, "Advanced Operating
System/Virtual Storage (AOS/VS) Programmer's Manual Volume
2 System Calls," Westborough, Massachusetts, March 1983.

[DAT84] Data General Corporation, "Ada Development Environment
(ADE) (AOS/VS) User's Manual,".Westborough, Massachusetts,
March 1983.

[DEC92] Digital Equipment Corporation, "VAX/VMS I/O User's GuideI uluUL) , Aaynarr '..st" May 1982.

[DEMA79] DeMarco, Tom, Structured Analysis and System Soecification,3 Prentice-Hall, Englewood Cliffs, NJ, 1979.

DP82] Datapro Reports on Data Communications, vol 2., Sept 1982,3"Display Terminal'", n C25-10-101.
[ELS73 Elson, Mark., Conceots of Programming Languaces, Science

Research Associates, Inc. Paris, France 1973.

*[~FH83] French, Stewart and Harrison, Tim, "The APSE Interactive
Monitor," Texas Instruments, Inc., March 1983.

3

1 3-351

REFERENCES

[FOR83 I Foreman, John, "Experiences With Ob-ect-Oriented Design,"
AdaTEC, Cherry Hill, NJ, June 1983.

[FRA] Franck, R., "Design and Implementation of a Virtua
Terminal for a Real-time Application System"

[F.LRE83] French, Stewart L., "A Virtual Terminal Specification and
Rationale," IEEE Proceedings, 7th International Computer
Software and Applicarionq Conference. COMPSAC 83, November
7-11, 1983.

LFRIE791 Frieman, Frank R. and Park, Robert E., "Parametric Cost
Models," RCA PRICE Systems, RCA Corporation, Cherry Hi",
N.J., October 1979.

LGOL83 I Goidberg, A. and Robson, D., SMALZTALK-80 The Lancuace and
its Imoiementation, Addison-Wesley Pubi.s hnig Company,
Reading, MA, 1983.

[G0075 Goodenough, John B., "Exceotion Handling Design issues,"
ACIM SIGPLAN Notices, July 1975, pp 41-45. Association for
Computing Machinery, Inc.

[GRENS0 Greninger, Lars and Roberts, Roger, "Considerations for a
Local Virtual Terminal Interface," Presented at :EEE
Conference, September 1980.

[GRR80 I Groves, L.J. and Rogers, W.J., "The Design of a Virtual
Machine for Ada", Communications of the ACM, 1980.

[HAP83 I Habermann, A.N., and Perry, D.E., Ada For Experienced
Programmers, Addison-Wesley Publishing Company, 1983.

[HCA81 I Hoare, C.A.R., "The Emperor's Old Clothes," 1980 ACM Turing
Award Lecture, Communications of the A0-4, Vol. 24 No 2, Feb
1981.

[ISO642] International Standards Organization, Standard number: :So
DP 6429, "Additional Control Functions for Character
Imaging Devices (Draft)," Not approved, April 1982.

[JOY1 I Joy, W. and Horton, M., "TERMCAP," UNIX Procrammer's
Manual, Seventh Edition, Berkley release 4.1, June 1981.

[LAN79A] Lantz, Keith A., et.al., "RIG: ?.n Overview, Working
Paper," University of Rochester, Rochester, NY, 1979.

3-3bZ

U

REFERENCES
OTHER PUBL:CATI:NS

LLAN-wa Lantz, Keith and Rashid, Richard, "Virtual Terminal

Managementin a Multiple Process Environment," Proceedings
of the Seventh Symposium on Operating Systems Principles,

I (December 10-12, 1979).

[LAW78 I Lawson, James T. and Mariani, Michael P., "Distributed
Data Processing System Design - A Look at the Partizioning
Problem," IEEE Press, 1978.

[LOVSI Loveman, David., "Ada Resolves the Unusual with
'Exceptional' Handling," Electronic Desian, January 22,
1981.

[MAC8! MacEwen, Glen H. and Martin, T. Patrick, "Abst-action
Hierarchies in Top-Down Design," The Journal of Systems and
Software 2, 213-224(1981), Elsevie-r-Science Publishinhg Co.

[MAG79 Magnee, F., Endrizzi, A., and Day, J, "A Survey of Terminal
Protocols," Comouter Networks, 1979, pp 299-314.

[MEY8l I Meyrowitz, Norman and Moser, Margaret, "BRUWIN: An
Adaptable Design Strategy for Window Manager/Virtual
Terminal Systems," Department of Computer Science, Brown
University, December 1981.

[OLS83] Olsen, Eric W. and Whitehall, Stephen B., Ada for
Programmers, Reston Publishing, Inc., 1983.

[PAR72] Parnas, D.L., "On the Criteria to Be Used in Decomposing
Systems into Modules," Communications of the ACM, Volume 15
Number 12, December 1972.

[PER83 Perry, John W., "Are We Wearing the Emperor's Old
Clothes?", 1NFO-ADA ARPAnet message, 4 Nov 1983.

[PRES82] Pressman, Roger S., Software Enqineerinc: A Practitioner's
Approach, McGraw-Hill, New York City, New York, 1982.

[SCJ78 Schicker, P. and Duenki, A., "The Virtual Terminal
Definition," Computer Networks, 1978, pp 429-441.

[S:M76 DEC-System 10 Simula Language Handbook: Part 1: The
Programming Language Simula. Report no. C8398. Part 2:
DEC-System 10 Dependent Information, Debugging. Report no.
C8399. Part 3: Utility Library. Report no. CI0045.
Rapportcentralen, FOA 1, S-104 50 Stockholm 80 Sweden.

I

1 ~3-3 53

REFERENCES
OTHER PUBLICATIONS

[SPES I Spencer, P.D. and Gordon, D., "Software Develccment
Methods For Use With the :APX432 M:crcprocessor,"
EURCMICRO, 1981, North-Holland Publishing Co.

[STE8I Stenning, Vic, Et Al., "The Ada Environment: A
Perspective," Computer, Volume 14, n' iber 6, June 1981, c
26-34, 36.

rSUK8! Sukamar, Srinivas and Wiese, John D, "Hardware and F:rmware
Support for Four Virtual Terminals in One Display Staticn,"
Hewlett-Packard Journal, March 198>

CTAFB2 I Taft, S. Tucker, "Portability and Extensi!i::tv tne
Kernel and Database of a ProgLamming Support Environment,
Intermetrics, March 1982.

LTAJ79 I Tajima, Takashi and Katsuyama, Yosh.ki, "Layered and

Parametric Approch to Terminal Virtualization," Presented
at International Conference on Corrmunications, Boston, MA,
June 1979.

LTAUS81] Tausworthe, Robert C., "Deep Space Network Software Cost
Estimation Models," Jet Propulsion Laboratory, Pasadena,
California, Aoril 1981.

[TIBIA] Texas Instruments, "Ada Intearated Env;ronment,"
Lewisville, TX, March 1981. Prepared cr Rcme A~r
Development Center (RADC) under DoD Contract
F30602-80-C-0293.

[-T85G Texas Instruments, "SoftCost Software Prce Estmazcn
Model User's Guide," Version 3.4, 1385.

[TI55H] Texas Instruments, "Tecnnical Report on Tools Designed by
Texas Instruments," Contract N660001-84-R-3023, 15 Apr1
1985.

[THA82] Thall, Richard, "The KAPSE for the Ada Languaoe System."
SofTech Inc, Proceedings of the AdaTEC conference on Ada,
October 1982.

£WEB80] Websters New Colleaiate Dictionary, G. and C. M err :m
Company, Springfield, MA, 1980.

[WOL81I Wolfe, Martin I., et al., "The Ada Languace Sy!stem,"
Comouter, Volume 14, number 6, June 1981, pp 37-4:.

3 -35,

U APSE a

F;.na R ?ep cr t on InterlaceIAna-lsi4s and Software
gncner.ng 'Iechniques

V 0L URE 3 ..-

Irnrrt.c 4i [III

Sai-wa I I a : I

C :nt rart so.

I I iI

P.O. Box 901, M.S. 8007 t I ~ U .~

Mc.i'.innev, Texas 7506 IIiIIHIIIIiH

15I 1111 III 11111

4- TEXS INSTRU..MENTrS

6NCCRP0RAT=f

3 -5 -" .,

-2-

-7I

-Ada is a registered trademark of the U.S. Government,. Ada Join,
- Program Offi.ce (AJPO). .*

AD Is4trademark o f ROLM Corporation..

.....

-DEC. is a trademark of Digital Equipment Corporation.

R0114 s . rg steedtrademark ofRCLM.1 Corporati.on.

-VAX is a tae rkof DgtlEupetCorporation. (-

VMS is'a trademark of Digital Equipment Corporation.

3 CONTENTS

1 INTRODUCTION .
1.i The AIM
1.2 Design For Transportability
1.3 The Environments 5
2 PROCEDURES FOLLOWED 6
2.1 Physical Transfer 6
2.2 System Dependencies 6
2.2.1 Computer Terminal Control And Communications . 7
2.2.2 Process Control And Communications
2.2.3 Environment Variables...............9
2.2.4 Ada Length Representation Clause 9
2.3 Order Of Integration During Rehost 9
2.4 Using A Debugger 1
2.5 Formal Testing :0
2.6 A Feedback Loopi

3 REHOST PROBLEMS 1
3.1 Code Work-Arounds

. Ii

3.2 Program Termination 2
3.3 System Dependencies 13
3.3.1 Enforcing A Model (and Making Assumptions About

It) 13
3.3,2 Terminal Communications 14

3.3.3 The Process Model 16
3.3.4 Complexities Relating To System Services . .i8

3.3.5 Representation Clauses 20
3.4 Module Testing Baggage 211 4 CONCLUSIONS I

APPENDIX A GLOSSARYI
APPENDIX B REFERENCES

3.1 GOVERNMENT STANDARDS-

B.2 GOVERNMENT SPECIFICATIONS B............ -1
3.3 OTHER GOVERNMENT DOC.MENTS 3-2
3.4 OTHER PUBLICATIONS B-3

3-357I~~'~

3-3 58

U
I

3 1 INTRODUCTION

This document presents a case study of transporting an Ada(tm)
software tool from one environment, the Data General AOS/VS Ada
Development Environment (ADE)(tm), into another environment, the
Digital Equipment Corporation VAX/VMS(tm) environment (with the
DEC(tm) Ada compiler and tools).

I The APSE Interactive Monitor (AIM) was developed in Ada in the DG
ADE. The AIM was transported to the VAX/VMS in 2.4 man-months. The
transport turned up many issues including:

* how to deal with compiler bugs,

3 * problems with run-time storage allocation schemes,

* problems with scheduling and task blocking schemes.

how inappropriate assumptions can be made with regard to

low-level models of the operating system functions,

* how inappropriate reliance can exist on operating system

services,

the positive and negative aspects of techniques that improve

transportability,

* problems relating to debugging a transported tool.

3 The use of Ada can promote the transportability of source code. This
case study shows that, with appropriate transportability guidelines,
and attention paid to the details, a software tool written totally in
Ada can be moved from one system to another with minor difficulties.

1.1 The AIM

The AIM is a software tool written in Ada developed for the Nava'
Oceans System Center (NOSC) under contract number N66001-82-C-0440
[TI82][TI83A-J] [TI85A-F]. This contract had the following goals:

I * Identify and investigate operating system interfaces that affect
transportability of software tools,

3 *Provide support and feedback to NCSC and Ada Joint Program Office
(AJPO) KAPSE Interface Team (and KAPSE Interface Team for
Industry and Academia) KIT/KITrA. The KIT/KITIA is attempting to
develop a common set of operating system interfaces to promote
interoperability and transportability of software tools, and
provide the interfaces in Ada.

3
I

3-359

I

INTRODUCTION
The AIM

* Provide a useful operational tool, and,

" investigate techniques, tools and transportability issues

pertinent to developing in Ada.

The AIM is a tool that a user runs from a computer terminal. :t
provides the user with the capabilities to define windows, images,
viewports, and pads. Where:

* window - A host OS process' view of the computer terminal display

screen (that is, some other process than the AIM),

* image - The users' view of the computer terminal display screen,

viewport - A mapping from a window(s) to an image, where many
windows can be mapped onto one image, and one window can be
mapped onto more than one image (however, one window may not b(
mapped more than once on the same image).

* pad - A file containing a transcript of the text in a given
window.

The AIM supports running multiple host OS command interpreters (one
per window). Please refer to Figure 1 for a visual representation of
these definitions.

3-360

IN'rRODUCTIC
The Al

3 Windows- Im-ages-

AOML"RR ox"RAINRAI
A E770--/

*PC,

_________ Viewport Header

'RA,; 'IViewport

- t mi

AIM Command____
Interpree

I Figure 1. The Elements of the AIM

3-3 61

INTRODUCTION
The AIM

The AIM exercises most Ada Language capabilities of Ada including:

* packages,

* tasks,

* generics,

* types,

* aggregates,

* slices,

* interfaces to other languages,

* representation specifications,

* text I/O,

* separate compilation.

It does not use:

* floating or fixed point,

* task families,

* interrupts.

Within the AIM there are many sources of asynchronous data (that is,

data that appears at random times that must be handled by the AIM):

* the terminal keyboard,

* each host OS process (that is running the host command
interpreter),

* internal AIM script files.

The AIM is 22,000 text lines of source code. It is contained in 240
separately compiled text files. When the AIM is running, the number
of concurrent Ada tasks range from a minimum of 15 to a maximum of
approximately 180.

3-362

U
INTRODUCT!C

Design For Transportabillt.

3 1.2 Design For Transportability
A great effort was made to increase the transportability of the

source code. The following techniques were used:

Isolation - the system dependent parts of the AIM were minimized
and placed in packages. A model was developed for each system
dependency, and interfaces developed (the package specification).
The implementation of each intertace would need to be rewritten
when moving from one system to another.

3 *Encapsulation - Object oriented design was used in an attempt to
identify the objects, their attributes, and the operations that
were to be performed on the objects. These objects were placed
in packages. As each package was developed, particular emphasis
was placed on minimizing inter-package 'ewendencies.

*ANSI Ada was used. Chapter 13 issues (optionalI items) were
isolated into the system dependent packages as much as possible.

3 1.3 The Environments

'ne £ nda Development Environment (ADE) [DAT84] is a complete
environment that is entered from the standard DG AOS/VS operating
system. Within the environment all of the AOS/VS command interpreter
commands are available as well as specific ADE commands to supporzAda program development.

I The DEC VAX/VMS environment has integrated the Ada compiler into the
standard VAX/VMS program support environment. The compiler is run
like all other integrated compilers on the system. A support system
for automatic recompilation, program library management, and other
support functions is provided through the Ada Compilation System(AkS).

1 3oth environments include:

full ANSI Ada compiler,

Ada linker,

3 * Ada program librarian,

* Ada source level debugger,

3 * project management capabilities,

3-363I

INTRODUCTION
The Environments

* te..L formatter,

* editor(s),

* configuration management support,

* support capabilities (including file creation, deletion,
renaming, copying, printing, etc).

2 PROCEDURES FOLLOWED

This section documents the procedures followed when rehosting the AIM
from the ADE into the VMS environment.

2.1 Physical Transfer

The AIM was transfered from the ADE into the VMS environment at the
source code level. The two envirunments have completely different
(and oroprietary) formats for object and executable files, and no
technique exists for converting between them. Since the AIM consists
of 240 separate source files, and these files resided in different
branches of the AOS/VS tree structured file system, it was necessary
to use a transport tool known as Pager. Pager is a transportability
tool located on the Ada software repository on the ARPAnet node
SIMTEL-20. Pager runs on a variety of machines including the Data
General and VAX. it is written entirely in Ada. Pager takes groups
of source (more generally, any text) files and groups them into one
text file, with separations between the start of one and the end of
another. This one file is transferred from the host to the
destination, then Pager is run again on the destination computer to
put the source back into the separate files from which it came.
Pager can also be used to maintain (and reconstruct) the tree level
structure of the original directories where the source resided.

Magnetic tape was used to transfer the single paged file from the ADE
to VMS. ANSI magnetic tape support exists in both environments.

The entire transport, including paging. dumping the file to tape,
reloading the tape onto the destination computer, and unpaging into
its original directory structure took one afternoon.

2.2 System Dependencies

The AIM has four interface areas which are dependent on the host
operating system:

3-364

I
PROCEDURES FOLLCWE:
System Dependencie:

* computer terminal control and communications,

* pcocess control and communications,

* environment variables,

* Ada "length" representation clause.

I These operating system dependent interfaces were developed in VMS
over a period of about one man-month. A rather complete description
of these is presented to promote
greater understanding when the problems and issues are discussed in

section 3.

I 2.2.1 Computer Terminal Control And Communications

The AIM computer terminal control and communications package is known
as SYSDEP. This package provides very elementary interfaces for
controlling and communicating with the computer terminal. The
interfaces are:

* Open the computer terminal - When the terminal is open all
characters written to it will be sent directly to the terminal
immediately (no buffering), and there will be no translation
performed by the host operating system. If the computer terminal
cannot be opened, then an exception is raised.

* Close the computer terminal - Reset the computer terminal back to
the characteristics it had before OPEN was called. If there are
any outstanding I/O requests pending on the terminal, they will
be dequeued immediately.

Read data from the computer terminal's keyboard - At least one
character is read at a time. There is no translation done on the
characters before they are passed back to the calling program.
No echo is performed before passing the characters back to the
calling program (that responsibility is held by the rallin,

program). This "no echo" characteristic can be setup in the OPEN
on some systems. Also, a call on READ must not block the entire
process that contains both the reader and the SYSDEP package,
only the task calling the read should be blocked. In this
manner, tasks can be fired up to infinitely loop reading data,
rendezvousing with a buffer task and passing the characters on,
eventually to be read by another task.

write data to the computer terminal - A call on WRITE causes a
string to immediately be sent to the computer terminal. When the
call returns the string either must be on the screen or queued to

I
I

3-365I

PROCEDURES FOLLOWED
System Dependencies

the screen (via host operating system services).

Determine the name of the terminal - This package must find a way
to determine a unique name of the computer terminal. The A7M
expects to have a name that it can then look up in a terminal

capabilities database to figure out the escape character
sequences appropriate for the particular terminal on which the
AIM is running. This is a text string.

Determine the name of the terminal capabilities database -
filename. This database is a text file that, when given the
name, can be manipulated with TEXT_1O.

2.2.2 Process Control And Communications

The process cortrol and communication package is caIIed
SYSDEPPROCESS. This package defines the following interfaces:

Create a new son process - A process is an operating system
entity that runs as if it is executing in its own comouter. The
process created will be running the host operating systems'
standard command interpreter. Interprocess communication
channels will be created and passed into the newly created son
process as its standard input and output files. The AM,
therefore, will be able to communicate with the son process
through these channels.

Destroy a son process - When called the son is immediate'; I
destroyed. Anything running in the process is stccedI
unconditionally. The IPC files are shut down and deleted. An-v
pending 1/0 requests are dequeued.

* Read a line from a process - The :alling task is blocked until a
line is available to be read (but not the calling process, as in
the terminal control and communication section above).

Write a text line to the process standard input - This is a tex:
line containing a command that will be interpreted by the program
running in the son process. The calling task will not wait :cr
the son process to read the text line from the !PC file. The
text line will be queued to the :.C file.

* Various status and information queries

3-366

PRCCEDUTRES FCLLOWE
System Deenen'e

")0

2.2.3 Environment Variables

An environment variable is a -napoing from an AM internal entity tha:
names a host operating system entity, to an associated host opera:nq
system entitv. The AIM has four requirements for environment

variables. These are:

getting the terminal name,

* g-tting the name of the terminal capabilities file (TCF),

. getting initial script file name,

getting the parse table initialization file,

* getting the help file.

On the Data General these are implemenced usino files. There must
files (or iinka "o files) named TEIM, TCF, A:M NT SCRIPT FILE, anc
AIMIELPFILE on the user's search path.

On the VAX, "logical names" are used for these environment variables.
A logical name TERM must exist and contain the name of the terminal
Also, the logical names TCF, AIM INIT SCRIPTFILS, and AIM REL?
m.ut exist and :oint to valid filenames.

From the point of view uf the cal'ing program there is no drterence.
The imclementAtion is hidden in the packages SYSDEP and
DATABASESUPPORT.

2.2.4 Ada Length Representation Clause

To get the tasks to run on the Data General it was necessary to
expand the task memory size using the Ada representation leng:n
clause (see the Ada LRM section 13.2):

for TAZK NAME'STCRAGE S:I:Z use TASK SIE' "

"his clause can have different meaning on different systeMs. Also,
t-his clause had to be placed in a scecific olace in the source code.

2.3 Order Of :ntegration During Rehost

L &The AIM was a debugged, running system, when the rehcst. was
. attempted. After the A7M system dependent oarts were developed and
" debugged, the simplest technique for debugging the AI: was simply to

V compile it all, link it, and run it. It did NO' run the first time.
A technique had to be developed to debug the AIM. However, tne
debugging information had been removed much earlier in the mcdu'e

3-367

-in I '-~ - /
~ I,

REHCST PROBLeMS

Zode Work-Arounds

AIM.

3.2 Program Termination

The AIM is a orogram that has many tasks (un to 130) running at t"e
same time and performing many different functions, including:

* infinitely ooping monitoring an operating system I/O request,

* managing a buffer, such as accepting reads and writes,

* infinitely looping reading from one buffer and placing data into
a queue, and,

* managing queues.

The two basic building blocks were infinite loops wi-h no incominc
rendezvous' and infinite loos with select blocks.

The major problem in terminatin-g the AIM was this: It could not be
determined how to dequeue an I/O request to a device or process.
When an infinite loop task was started, reading from the terminal or
process and, when the read completed, writing the information to a
buffer task, the task blocked a- the call to read from the device or
process. The AM would be ready to shut down except for these t.asks
and the tasks that were dependent on messages frcm these tasxs. The
task would be waiting on an I/O request that would never occur. :n
the case of queued terminal 1/O requests the termina4inc character
could simply be typed at the terminal, and the system could shut down
gracefully. But this was an inappropriate answer, reacting to the
symptom, not really sol',ing :he problem (although it was used for a
while). The problem was more severe in the case of queued i/O
requests to the :PC files associated with the external processes.
.Shutting down the process, or deleting the :PC file did not seem to
dequeue the I/O request.

A system service was discovered, "?TER-. With an appropriate cal
on "?TEaM" the entire AM process could be deleted and control
returned to the host command interpreter. By making use of this
system service the AM could be shut down immediately, regardless o:
the state it was in.

This solution was used throughout the remaining development,
integration, and testing of the AIM, and it worked just fine for the
Data General implementation. However, it caused problems during the
rehost. They only similar service that coul' be called from t:h DEC

A side was "$MXIT". This system service had problems when tasks were
I running. it did not work consistently. The DEC, on the other hand,

3-370

. -.

I
REHOST PROBLEM

Program Termiinatio

had the facility to dequeue an 1/O request (DEC82 1. So, the
termination code was reworked to allow the AIM to terminate
correctly. That is, the tasks shut themselves down or were waiting
at terminate alternatives when the AIM program completed.

By doing this, we diverged from the original implementation.
Luckily, a Data General systems programmer gave us the answer to the
dequeueing an 1/O request. By ABORTing the tasks that were doing :he
operating system I/O service calls, the queued requests would become
dequeued.

By careful encapsulation and isolation, the ABORT statements were
embedded in the system dependent code.

3.3 System Dependencies

There was a variety of problems that surfaced in the area of system
dependencies. without performing a detailed analysis of the various
systems that you will be rehosting to, you cannot be sure tha: your
model will work in all the systems.

3.3.1 Enforcing A Model (and Making Assumptions About It)

The design of the AIM left nebulous the exact details of the models
for terminal control and communications and for process control and
communication. During implementation these models firmed up and took
shape. The models were implemented as described in section A.2.2.

As it turned out, these were all very reasonable design criteria, and
almost every one had problems. They will be addressed in the next
two sections in order.

For communications with the terminal the following capabilities wil
be discussed:

* read every character from the terminal with no translation,

* read at least one character at a time,

* exclusive access to the terminal.

For control and communication with processes, the fol.owing
capabilities will be discussed:

Spawn a son and pass it standard input and standard output tiles
- All terminal directed output would be intercepted by the A4i
through the process' standard output file. All process directed
input (that would normally come from the terminal) would be

I
I 3-371

I

REHOST PROBLEMS
System Dependencies

supplied by the AIM through the process' standard input.

* Deleting a process would shut it down immediately regardless of
what it was doing -

* Detect and control any son processes of a son process (grandson
processes) - It was felt important to both detect and prune these
processes from the process tree to control the operation of the
AIM.

3.3.2 Terminal Communications

* read every character from the terminal with no translation - What
about characters such as XON and XCFF? These characters are used
for flow control in some systems, and can be generated from the
terminal by pressing CONTROL-S and CONTROL-Q. Other problem
characters can include: CONTROL-C, CONTROL-Y, CCNTROL-O. These
characters are intercerted by the different operating systems for
different purposes and may not get to the program.

Ways were found around all of the problem control characters
except CONTROL-S and CONTROL-Q. It is undesirable to handle flow
control. This is an extremely difficult task best left to the
operating system. But this problem is indicative of a larger
probl em .

Consider the use of Local Area and Long Haul Networks. At Texas
Instruments Ungermann-Bass LAs are used. These LANs use the
tilde character for special purposes. It is intercepted by the
LAN. Complicating the situation further, four tildes in a row is
a disconnect sequence that will log a user off. Due to this, any
sequence of tildes must be followed by another character, at
which time all characters will be sent to the host. For example,
a tilde typed at the terminal will not be sent to the host, nor
two tildes in a row, nor three or four. However a tilde followed
by any other character (say an 'A') will, ai£er the 'A' is typed,
cause two characters, the tilde and the 'A' to be transmitted to
the host.

Going over a TAC to the ARPAnet causes the character ' ' to be
treated simiarly. If a user calls the comouter from a remote
site using a Novation smart cat 1200 baud modem the '%' key is
reserved. On a Hayes modem three quick pluses (" -') are
significant to the modem. Consider the following case: Il user
at TI would call into the T: LAN from home using a Novation
smartcat 1200 baud modem. The LAN talks with the VAX/VMS at 9600
baud. So, for a 1200 baud terminal to talk wi~h VAX tremendous

3-372

I
REHOST PRCBLEM!

System Dependencie!

flow control problems are handled using XON/XOFF all along the
communication path. A Hayes 1200 baud modem is connected to one
of the ports on the VAX allowing any user logged in to run a
special program and communicate out to the Hayes modem. This
Hayes modem is used to call a local ARPAnet TAC to gain access toa host where contract accounts exist. The modem support program
has a special character that means ATT.NTON" and allows a user
to log the data to a file, or exit the program. So, the path is:

User terminal <-> Novation modem <-> LAN <-> VAX <-> Hayes modem

<-> TAC <-> ARPAnet host

The characters that the user must concern themselves with are:

* XON/XOFF (CONTROL-S and CONTROL-Q),

* percent,

* tilde,

* at sign 'i',

* modem attention characters (which typically are setable).

The problem can be severe. One solution (which the MM uses) s
to define an interface to the terminal system dependent package
which allows a calling program to query about the characters that
are important. Passing a CONTROL-S into the function will return
a boolean identifying whether you can expect to see that key
coming from the keyboard, or be able to send that key to the
display screen. This solution is not graceful because it cannot
be determined completely which characters are valid at a giveninstant in time due to the variability of the communication
medium that is being used.

* Read at least one character at a time - In the Data General
AOS/VS operating system, characters from the computer terminal
can be read only one character at a time. Because of this
restriction, code written to support this aspect of the model,
that is, handling more characters than one at a time, was not
tested until the rehost. The VAX supports reading multiple
characters at a time, and the code was checked out on the VAX,
then eventually moved back to the DG.

Exclusive access to the terminal - This was possible on both
systems, but was found to be not desirable. System messages such
as "Going Down in 5 Minutes" would never "break through" the AIM
to the terminal and could not be intercepted by the AIM on the DG

I
I 3-373

I

REHOST PROBLEMS
System Dependencies

or the VAX if exclusive access were enabled. By simply adding a
repaint screen procedure, this requirement was eliminated.

A subtle problem was discovered late in the rehost. On the VAX an
infinite loop task that makes the operating system I/O call will
rendezvous with a buffer task that takes the information and places
it into a buffer, from which another task can extract it (at another
accept statement in the select clause). Typically, the task
rendezvousing with the buffer task to get data from the buffer ;.s
suspended until data appears from the terminal and is placed into the
buffer task. When the AIM is shut down the queued I/O request is
dequeued and the task infinitely looping passes a message to the
buffer task telling it to shut down. When the buffer task exits its
infinite loop there may be an entry call queued to the READ accept
statement. Typically a message could be passed back to the caller
before exiting the infinite loop telling it that things are shutting
down. But due to problems with the DG implementation, the only
reaction that worked was the raising of TASKINGERROR.

The elegant answer could not be used due to problems with the DG, so
the VAX version had to be modified to react with exactly the same
semantic meaning that the DG had when shutting down; that is, raisinc
TASKING ERROR. This problem could not be anticipated when the model
was developed, and it affected both systems.

3.3.3 The Process Model

The process model developed had some interesting problems. The
requirements of interest are:

Spawn a son and pass it standard input and standard output files
- This was possible in both systems. When the system was being
implemented on the DG it was discovered that the IPC channels
were actually files. As the AIM wrote to the process' standard
input it went into the IPC file and queued there. So writes were
non-blocking (asynchronous). On the VAX it was a differen:
story. The IPC channels (called Mailboxes) were completely
synchronous. When a WRITE was issued the calling task was
suspended until a process read the message from the IPC channel.
This is a completely different IPC model than was used to develoc
the AIM. Luckily, asynchronous IPC communications can be
simulated with synchronous IPC channels by buffering the writes
with an Ada queueing package. The asynchronous nature of the IPC
channels was simulated in Ada in the SYSDEP PROCESS package.
This was unanticipated but effective. If the AIM had been
develojed on the VAX and the model had been synchronous IPC
channels, it would not have been possible to simulate the
synchronous IPC channels using asynchronous IPC channels for the
Data General implementation. This was a completely unanticipated

3-374

B
REHOST PROBLEM

System Dependencie

problem with the model.

Another problem that affected the implementation of the model was
the passing of standard input and standard output into a son
process of the son process (a grandson) of the AIM. On the Data
General this simply did not work. The IPC files were passed in
and the process was created. But the information from and to the
process could not be tracked down. it seemed to disappear.
System engineers at Data General studied the problem and told us
that that functionality was not supported and would never be
supported. They said that it was a design decision made when the
operating system was being developed. On the VAX this worked
just fine.

* Deleting a sub-process would shut it down immediately regardless
of what it was doing - This is NOT the suicide call described in
A.3.2. The system service on the DG "?TERM" is supposed to be
able to do this. Howeier, it could not be made to work. A
similar facility on the VA.X worked just fine. So, in this
example, there exists a semantically different meaning for the
interface. Contrary to the terminal communication termination
prob 'im, where the choice was made to make the semantic meaning
the same to preserve the model, here the choice was made to
correctly implement the model on the VAX even though it made the
two models different. In this case it is preferred that the
interface react correctly rather than being consistent and acting
incorrectly.

* Detect and control any son processes of a son process (grandson
processes) - This was possible to do on both systems. However,
when attempting the implementation an interesting problem arose.
The Data General AOS/VS operating system uses processes much more
extensively to perform operations than the VAX does. Whenever a
command is issued to the command interpreter to invoke a program
it spawns a new process in which to run the program. These
subprocesses then have the option of spawning new ones (and
typically in an unpredictable manner) and thus treeing down. Not
all commands to the command interpreter cause a subprocess to be
spawned, but most do. Users do not see the spawning of the
subprocesses (unless they look for it). Typically there is no
limit on the number of suborocesses that a user can spawn. They
are resources that are not that precious.

On the VAX, processes are used much less. when a command is
issued to the command interpreter, it either does the command or
replaces itself in the current process with the program to be run
to perform the command. When the command is completed, the
command interpreter is brought back into the same process. It is
expensive and slow to spawn a subprocess on the VAX. Typically,

I
I

3-375

I

REHOST PROBLEMS
System Dependencies

a subprocess quota of 2 or 3 is sufficient for most users.

This is an inherent and subtle difference in the models presented
by the two operating systems to the programmer. The difference
involves not the presentation of the processes, but their
availability and cost.

3.3.4 Complexities Relating To System Services

Interfacing to system services on the Data General AOS/VS operating
system is difficult due to the lack of documentation on the supplied
interfaces [DAT83A,B]. A set of packages are supplied to perform the
necessary operations including:

* SYSCALLS - which is the primary package,

* TTY_10 - to simplify i/0 to the terminal,

* FILE_10 - to simplify 1/O to the file system,

* a file called PARU.32 which contains assembly language source
with the error messages that can come out of the system service
calls.

TTY 10 and FILE 1O use SYS CALLS in performing its function. The
specifications for these interfaces are quite short and can be
scanned easily in an afternoon.

Armed with these interfaces, some small knowledge of how the services
are called (mechanically) and the AOS/VS system services manuals
(there are two of them), it is possible to get the system service
calls figured out.

The VAX system services conform to the standard VAX system service
interface techniques. There is a set of packages:

* STARLET - the entire set of specifications for the system
services,

CONDITIONHANDLING - a support package containing the constants
and types for handling the errors that result from canllig a
system service,

TASKING SERVICES - supplying interfaces similar to STARLET except
supporting non-process t1.ocking 7/0,

3-376 I

I

REHOST PROBLE!,I System DependeflCiE

*RMS ASYNCHSERVICES - supplying interfaces similar to STARLET

except supporting non-process blocking access to VAX/VMS R1MS

'SYSTEM - the predefined package, which has been expanded~
significantly to support the calling of system services.

Figure 2 shows their WITHing structure.

oondition-ha~ding Sy stem

RMS-astinch-.Sa e
servicesStre

I K~te 1. yte

T askiNq..services

I32 yt

Figure 2. VkX/VMS System Service Package Structure

3-377

REHOST PROBLEMS
System Dependencies

These packages use WITH/USE/RENAME for many, many purposes, creating

essentially unrecognizable types across the different packages.

The packages are the following sizes:

* STARLET - 1.1 MByte

* CONDITIONHANDLING - 11 KByte

* TASKING SERVICES - 32 KByte

* RMSSYNCH SERVICES - 1 KByte

After examining and studying them for about a week, the following
conclusion was reached:

This is a perfect example of how to mae an interface
completely Ada-like and almost totally unusable.

Luckily, the source for the specifications of all of the packages
(except SYSTEM) was on-line and could be searched with an editor
(Emacs in this case). Without that capability, it would have been
very difficult making this interface work.

Based on this experience, the following guideline should be used by
all software designers with transportability goals:

KEEP IT SIMPLE

3.3.5 Representation Clauses

To get the tasks to run on the Data General it was necessary to
expand the task run-time memory size using the Ada representation
length clause (see the Ada LRM section 13.2):

for TASKNAME'STCRAGESIZE use TASKSIZE;

The use of this length clause was required due to an unusual memory
allocation scheme that the ADE supported. This clause had to appear
in the source immediately within the declarative part where the task
(or task type) was declared.

On the VAX this clause was not needed. It turned out that it did no
harm to be there, however there may be compilers (and their
associated run-times) where clauses such as these cannot be made
transportable, and the techniques of encapsulation and isolation less
usable due to placement requirements within the source code.

3-378

I
REHOST PROBLEMS

Module Testing Baggage

3.4 Module Testing Baggage

An analogy between module testing and a rocket taking off can be
effective in demonstrating this issue. A multi-stage rocket has a
variety of lower stages that are used to boost the payload into
orbit. The goal is to obtain orbit. As the lower stages perform
their function they are discarded. In some more modern systems the
lower stages are recovered, completely refurbished and eventually (if
all goes well) re-used.

Module development and testing works similarly. As the modules are
debugged and eventually integrated into the whole, the testing
baggage becomes obsolete. If a system is to be rehosted, the
question arises: Can the modules testing code itself be re-used?
When rehosting, one works backwards from the original development.
The working system exists and runs correctly on one host. On the new
host, however, it may not work. As outlined above, should the
testing involve debugging the system as a whole, using a debugger,
making changes to the individual modules, then recompilinc and
re-linking? Or, should an attempt be made to adapt the old module

tests? This has some interesting issues associated with it:

* Can the modules be moved wits the source code onto tht. ,.-w host?

I Should consideration be given to the transportability of the
developed module tests?

* Should the design and documentation of the system reflect the
rtquiremenLs and methods of rehosting the module tests and the
data required for these tests?

Lastly, another approach is possible. After it has been determined
that the system does not work on the new host, break it down,
stubbing out low level modules and developing brand new module tests.

This implies a whole new technique for testing which is out of the3 scope of this document.

4 CONCLUS IONS

I The AIM moved from the DG ADE into the VAX/VMS environment in 2.4
man-months. Most of the problems were due to:

I * compiler bugs,

* inappropriate assumptions made with regard to the low-level
models of terminal and process, control and communications,

I
I

3-3 79I

CONCLUSIONS

* inappropriate reliance on AOS/VS services to terminate the AIM,

The transport was assisted by:

* using an ACVC validated Ada compilers,

* designing in transportability by using the techniques of
encapsulation and isolation, and

using the source level debugger to identify the problem areas.

3-380

I
I
I
I

I APPENDIX A

GLOSSARY

3 ACS
Ada Compilation System. A DEC product.

i ADE Ada Development Environment. A Data General product.

AIM
I A APSE Interactive Monitor

ACS /VS
Advanced Operating System/Virtual System. A Data General
operating system that runs on the Eclipse model computer
computer systems.

i APSE
Ada Programming Support Environment

character
A member of a set of elements that is used for the organization,
control, or representation of data.

I echo
e The act of re-transmitting a character immediately upon receipt

of it back to the entity that originally transmitted it.

character strina
A bounded sequence of ASCII characters.

command scriot
A database file containing commands to the AM command
interpreter. The command interpreter reads commands from the3 command script rather than prompting tne user interactively.

i
I

3-38 1

I

GLOSSARY

DG
Data General

DEC
Digital Equipment Corporation

disolav
The area for visual presentation of data on a character imacinc
device.

environment variable
A mapping from an AIM internal entity that -names a host
operating system entity, to an associated host operat:ng system
entity.

exclusive access
Control of a file (or, the terminal, in this case) which
prohibits any other program besides the AIM from wri:ing to tne
terminal screen.

flow control
The control of communications to prevent the loss of information
due to the recelver being unable to accept it.

imace
An analog of the physical display device, The imace :s the
entity that is mapped onto the display. Given a numzer o: ser
defined images, only one at a tune can oe mapped onto the
display. The rest exist and are updated asynchronous-y out are
not mapped onto the display until the user recuests

Inte.face
The olace at which independent svs:ems meet and act on or
communicate with each other.

interocerabi1i v
The ability for systems to exohanQe informati:on.

KAPSE
Kernel Ada Programing Support Env1ronment.

keyboard
The physical input Jevlce.

KIT
KAPSE Interface Team.

3-382

i GLOSS

KITIAU K KAPSE Interface Team for :ndustry and Academia.

LAN3 - Local Area Network

mapping
The relationships managed by the A:M connecting .:c-a
representations of windows, images, and view.crts to cnys--a"
representations on a display device.

I NOS CIS Naval Ocean Systems Center

cad
Two files which contain a complete history of w,.ncow
that transpires from the beginning of pad mcde un-t_ s
terminated by the user or the window is destroyed. -ne pa-c,
INPUT pad, includes the input to the APSE Orogram -rom -e use-
through the keyboard. The other pad, the OUTPUT pad, _:cs the
output to the display from the AIM and any program a:e v3 the AIM.

o iDe
A logical connection between an output file of one3 an input file of another program.

process
An operating system level flow of control that runs as if
executing on a separate computer.

The area for visual presentation of data on an' e
character imaging device.

son orocess/sub-orocess
A process which depends in some manner on e Lr:e
created it.

standard inout/standard outout
input and output files defined in the cac.ace TEXT 2. F:r A>
purposes, these must be the only files used f r

system dependent
Using features which are unique to a scecIfi: Ada
Support Environment (such as ADE or TMS).

I
I
I

3-383I

GLCSSARY

task
An Ada program unit that operates in parallel with other program
units.

terminal
A data communications device consisting of a keyboard anu a
character imaging device.

Terminal Capabilities File (Database)
A fiie which descrTbes common terminal functions in terms of
device-specific control sequences, for many different :erminals.

transmit
To send data as e data stream for purposes of information
interchange.

transmortabi1ity
The degree to which a software tool or system can be moved from
one environment to another.

user terminal
The terminal with which a user interacts in order to communicate
with an APSE program.

VMS
Virtual Memory System, a DEC operating system for :ne VAX
family of minicomputers.

v ewport
The portion of the window displayed in the image.

viewtort header
A single highlighted line located at the top of a viewqorort.

window
An analog of the APSE program's view of the terminal.

3-384

APPENDIX 3

REFERENCES

I B.I GOVERNMENT STANDARDS

The following documents of the exact issue shown form a part of this
specification to the extent specified herein. in the event of
conflict between the documents referenced herein and the contents or
this specification, the contents of this specification shall be3 considered a superceding requirement.

rDOD80 United States Department of Defense, "Requirements for Ada
Programming Support Environments" ("STONEMAN"), February
1980.

IDOD83] United States Department of Defense, "Reference Manual for
the Ada Programming Language, ANSI/MIL-STD-!15A-1983,"
February 17, 1983.

EDID73] Data Item Description, "Informal Technical information,3 D1-S-30593," March 73.

3.2 GOVERNMENT SPECIFICATIONS

3 The following documents of the exact issue shown form a part of this
specification to the extent specified herein. in the event of
conflict between the document referenced herein and the contents of

I this specification, the contents of this specification shall be
:onsidered a superzeding requirement.

[11NT82] Intermetrics Inc., "IR-678-l Computer Program Development
Specification for Ada Integrated Environment:
KAPSE/Database Type B5," Wakefield, MA, November 1982.

[KIT83] KAPSE Interface Team (Ada Joint Program Office), 'Common
APSE Interface Set", Version 1.1, September 1983.

3-385

R=EFERENCES
GOVERNMENT SPECIFICATIONS

EKIT85] KAPSE Interface Team (Ada Joint Program Office), "Proposed
Military Standard Common APSE Interface Set (CARS)",
January, 1985.

CSOF82] SofTech Inc., Ada Problem Report 602, Waltham, MA,
November 1982.

ESOF83] SofTech Inc., "Draft Ada Language System Specification,"
Waltham, MA, November 28, 1983

3.3 OTHER GOVERNMENT DOCUMENTS

The following documents of the latest issue per date of this report
form a part of this specification.

[T:82 Texas Instruments, Advanced Computer Systems Laboratory,
"Proposal for Development of Ada Software Tools and
Interface Standards," Lewisville, TX, February 1982.

[T83A Texas Instruments, "APSE Interactive Monitor (AIM) Program
Performance Specification (PPS)," Contract
N66001-82-C-0440, 19 September 1983.

[T83B Texas Instruments, "APSE interactive Monitor (ATM) Software
Development Plan (SDP)," Contract N66001-82-C-0440, 10 July
1983.

T!33C Texas instruments, "APSE Interactive Monitor (AiM)
System/Integration Test Plan (SIT?)," Contract
N66001-82-C-0440, 23 December 1983.

[T183D I Texas Instruments, "APSE Interactive Monitor (AIM) Software
Quality Assurance Plan (QA)," Contract N66001-82-C-0440, 23
March 1983.

ET:83E I Texas instruments, "APSE Interactive Monitor (ATM) Computer
Program Test Specification (CPTS)," Contract
N66001-82-C-0440, 15 September 1983.

[T!83F I Texas Instruments, "APSE Interactive Monitor (AIM)
Configuration Management Plan (CM)," Contract
N66001-82-C-0440, 28 March 1983.

[TI83G I Texas Instruments, "Interim Report on Interface Analysis
and Software Engineering Techniques," Contract
N66001-82-C-0440, May, 1983.

3-386

I
I REFERENCE.

OTHER GOVERNMENT DOC MENT

[T183H Texas Instruments, "Interim Report on Interface Analysis
and Software Engineering Techniques," Contract3 N66001-82-C-0440, December 1983.

CTI85A Texas Instruments, "APSE Interactive Monitor (AIM) User's3 Manual (UM)," Contract N66001-82-C-0440, July 1985.

[T1853 Texas Instruments, "APSE Interactive Monitor (AIM) Program
Design Specification (PDS)," Contract N66001-82-C-0440,3 July 1985.

ITI85C Texas Instruments, "APSE Interactive Monitor (A:M)
System/Integration Test Procedures (SIT RO Contract
N66001-82-C-0440, July 1985.

[TI85D Texas instruments, "CAIS Rationale," Contract
1N66001-82-C-0440, July 1985.

[TI85E Texas Instruments, "Ada Tool Transportability Guide,"

Contract N66001-82-C-0440, July 1985.

[T185F Texas Instruments, "Installation and Maintenance Guide for
the APSE Interactive Monitor (AIM)," Contract3 N66001-82-C-0440, July 1985.

[TI85G Texas Instruments, "APSE Interactive Monitor (AIM)
Acceptance Test Plan (ATP)," Contract N66001-82-C-0440,

I July 1985.

[TI85H Texas instruments, "APSE Interactive Monitor (AIM)
Acceptance Test Procedures (ATPRO)," Contract
N660l-82-C-0440, July 1985.

3 B.4 OTHER PUBLICATIONS

[ABB82 j Abbott, Russell J., Program Design by Informal English
Descriptions, Unpublished.

LAK.N811 Akin, T. Allen, "Virtual Terminal Handler Preliminary Quick
Reference," School of Information and Computer Science,
Georgia Institute of Technology, April 1981.

[ANSI73I American National Standards Institute, "american National
Standard Graphic Representation of the Control Characters
of American National Standard Code for information
Interchange (ANSI Standard X3.32-1973)," Julv 1973.

I
I 3-387

I

REFERENCES
OTHER PUBLICATIONS

CANSI77] American National Standards Institute, American National
Standard Code for Information Interchange (ANSI Standard
X3.4-1977)," June 1977.

[ANS1791 American National Standards Institute, "American National
Standard Additional Controls for Use with American National
Standard Code for Information Interchange (ANSI Standard
X3.64-1979)," July 1979.

[APSE82] "Working Paper: Ada Programming Support Environment (APSE)
Requirements for Interoperability and Transportability and
Design Criteria for Standard Interface Specifications," Not
Approved, October 1982.

[BAR80] Barnes, J.G.P. "An Overview of Ada", Software-Press.

[BO83 I Booch, Grady., Software Engineering with Ada. Benjamin
Cummings Publishing Company, Menlo Park, CA. Copyright
1983.

[3OR85] Borger, Mark W., "Software Design Issues in Ada," Journal
of Pascal, Ada, and Modula2, Volume 3, Number 3,
March-April 1985.

[BUH84] Buhr, R. J. A., System Design with Ada, Prentice-Hall,
Inc., 1984.

[COX83 I Cox, Fred, "KAPSE Support for Program/Terminal
Interaction", Working paper for KITIA/ Working Group 1,
February 1983.

[CSC82A] Computer Sciences Corporation, "Configuration Management
System Program Performance Specification (Draft)," Falls
Church, VA, August 1982. Prepared for Naval Ocean Systems
Center under contract N00123-80-D-0364.

[CSC82B] Computer Sciences Corporation, "Configuration Management
System Interim Report on Interface Analysis," Falls Church,
VA, August 1982. Prepared for Naval Ocean Systems Center
under contract N00123-80-D-0364.

[DAT83A] Data General Corporation, "Advanced Operating
System/Virtual Storage (AOS/VS) Programmer's Manual Volume
1 System Concepts", Westborough, Massachusetts, March 1983.

[DAT83B] Data General Corporation, "Advanced Operating
System/Virtual Storage (AOS/VS) Programmer's Manual Volume
2 System Calls", Westborough, Massachusetts, March 1983.

3-388

I
REFERENCES

OTHER PUBLICAT.ONS

[DAT84 I Data General Corporation, "Ada Development Environment
(ADE) (AOS/VS) User's Manual", Westborough, Massachusetts,
March 1983.

CDEC82 I Digital Equipment Corporation, "VAX/VMS I/O User's Guide
(Volume 1)", Maynard, Massachusetts, May 1982.

[DP82 I Datapro Reports on Data Communications, vol 2., Sept 1982,
"Display Terminals", p C25-10-101

[ELS73] Elson, Mark. Concepts of Programming Lancuages, Science3 Research Associates, Inc. Paris, France 1973.

[FH83] French, Stewart and Harrison, Tim, "The APSE Interactive3 Monitor" Texas Instruments, Inc., March 1983.

CFOR83 I Foreman, John, Experiences With Object-Oriented Design,
AdaTEC, Cherry Hill, NJ, June 1983.

I [FRA I Franck, R., "Design and Implementation of a Virtual
Terminal for a Real-time Application System"

[FRZE83 I French, Stewart L., "A Virtual Terminal Specification and

Rationale," IEEE Proceedings, 7th International Computer
Software and Applications Conference, COMPSAC 83, November3 7-11, 1983.

[GOI83 I Goldberg, A. and Robson, D., SMALLTALK-80 The Language and
its Implementation, Addison-Wesley Publishing Company,
Reading, MA, 1983.

[GO075 1 Goodenough, John B. "Exception Handling Design Issues",
A-M SIGPLAN Notices, July 1975, pp 41-45. Association for
Computing Machinery, Inc.

[GREN801 Greninger, Lars and Roberts, Roger, "Considerations for a
Local Virtual Terminal Interface," Presented at IEEE
Conference, September 1980.

[GRR80 Groves, L.J. and Rogers, W.J. "The Design of a Virtua!
Machine for Ada", Communications of the ACM, 1980.

[HAP83 Habermann, A.N., and Perry, D.E. Ada For Experienced3 Programmers, Addison-Wesley Publishing Company, 1983.

CHOA81 Hoare, C.A.R. "The Emperor's Old Clothes", 1980 AC-M Turing
Award Lecture, Communications of the ACM, Vol 24 No 2, Feb
1981.

3-389

REFERENCES
OTHER PUBLICATIONS

[ISO6421 International Standards Organization, Standard number: ISO
DP 6429, "Additional Control Functions for Character
Imaging Devices (Draft)," Not approved, April 1982.

[JoYs1] Joy, W. and Horton, M., "TERMCAP," UNIX Programmer's
Manual, Seventh Edition, Berkeley release 4.1, June 1981.

[LAN79A] Lantz, Keith A., et.al., RIG: An Overview, Working Paper,
University of Rochester, Rochester, NY, 1979.

[LAN79B] Lantz, Keith and Rashid, Richard, Virtual Terminal
Management in a Multiple Process Environment, Proceedings
of the Seventh Symposium on Operating Systems Principles,
(December 10-12, 1979).

[LAW78 Lawson, James T. and Mariani, Michael P., Distributed Data
Processing System Design - A Look at the Partitioning
Problem, IEEE Press, 1978.

[LOV81 Loveman, David. "Ada Resolves the Unusual witn
'Exceptional' Handling", Electronic Design, January 22,
1981.

[MAC81] MacEwen, Glen H. and Martin, T. Patrick, Abstraction
Hierarchies in Top-Down Design, The Journal of Systems and
Software 2, 213-224(1981), Elsevier Science Publishing Co.

[MAG79] Magnee, F., Endrizzi, A., and Day, J, "A Survey of Terminal
Protocols," Computer Networks, 1979, pp 299-314.

EMEY91 I Meyrowitz, Norman and Moser, Margaret, "BRUWIN: An
Adaptable Design Strategy for Window Manager/Virtual
Terminal Systems," Department of Computer Science, Brown
University, December 1981.

[OLS83 Olsen, Eric W. and Whitehall, Stephen B., Ada fcr
Programmers, Reston Publishing, Inc., 1983.

[PAR72] Parnas, D.L., On the Criteria to Be Used in Decomposing
Systems into Modules, Communications of the A04-, Volume 15
Number 12, December 1972.

[PER83] Perry, John W. "Are We Wearing the Emperor's Old Clothes?"
INFO-ADA ARPAnet message, 4 Nov 1983.

[SCH78] Schcker, P. and Duenki, A., "The Virtual Terminal
Definition," Computer Networks, 1978, pp 429-441.

3-390

i

1
REFERENCES

OTHER PUBLICAT:ON(

[SIM76] DEC-System 10 Simula Language Handbook: Part 1: The
Programming Language Simula. Report no. C8398. Part 2:
DEC-System 10 Dependent Information, Debugging. Report no.
C8399. Part 3: Utility Library. Report no. C10045.
Rapportcentralen, FOA 1, S-104 50 Stockholm 80 Sweden.

[SPESl] Spencer, P.D. and Gordon, D., Software Development Methods
For Use With the IAPX432 Micronrocessor, EUROMICRO, 1981,
North-Holland Publishirg Co.

[STE8! I Stenning, Vic, Et Al., "The Ada Environment: A

Perspective," Computer, Volume 14, number 6, June 1981, pp
26-34, 36.

[SUK81 I Sukamar, Srinivas and Wiese, John D, "Hardware and Firmware
Support for Four Virtual Terminals in One Display Station,"
Hewlett-Packard Journal, March 1981.

CTAF82] Taft, S. Tucker, "Portability and Extensibility in the
Kernel and Database of a Programming Support Environment,"
Intermetrics, March 1982.

[TAJ79 I Tajima, Takashi and Katsuyama, Yoshiki, "Layered and
Parametric Approach to Terminal Virtualization," Presented
at International Conference on Communications, Boston, MA,
June 1979.

CTI8A I Texas Instruments, "Ada Integrated Environment,"
Lewisville, TX, March 1981. Prepared for Rome Air
Development Center (RADC) under DoD Contract
F30602-80-C-0293.

[THA82 I Thall, Richard, "The KAPSE for the Ada Language System,"
SofTech Inc, Proceedings of the AdaTEC conference on Ada,
October 1982.

CWEB80 I Websters New Collegiate Dictionary, G. and C. Merriam
Company, Springfield, MA, 1980.

[WOL31 I Wolfe, Martin I., et al., "The Ada Language System,"
Computer, Volume 14, number 6, June 1981, pp 37-45.

3I
I
I

3-391

I

DoD

Requir emeiits

and

Design Criteria

for the Common APSE Interface Set (CAIS)

13 September 1985

Prepared and approved by the
KA.PSE Interface Team (KIT)

and the
KIT-Industry-Academia (KITIA)

for the

Ada* Joint Program Office
Washington, D.C.

* Ada is a Registered Trademark of the U.S. Government,
Ada Joint Program Office

3-392

I
DoD CAIS Requirements & Design Criteria 13 Sept 1985

Table of Contents

PREFACE

1. INTRODUCTION 1-1
1.1 Scope. 1-1
1.2 Terminology. 1-1
1.3 ReaLlv. ..±! ip tv .. :. pleL.,io,, 1-2
1.4 Reference Documents. 1-2

2. GENERAL DESIGN OBJECTIVES 2-1
2.1 Scope -f the CAIS. 2-1
2.2 Basic Services. 2-1
2.3 Implementability. 2-1
2.4 Modularity. 2-1
2.5 Extensibility. 2-1
2.6 Technology Compatibility. 2-1
2.7 Uniformity. 2-2
2.8 Security. 2-2

3. GENERAL SYNTAX AND SEMANTICS 3-1
3.1 Syntax 3-1

3.1A General Syntax. 3-1
3.1B Uniformity. 3- 1
3.IC Name Selection. 3-1
3.1D Pragmatics. 3-1

3.2 Semantics 3-1
3.2A General Semantics. 3-1
3.2B Responses. 3-2
3.2C Exceptions. 3-2
3.2D Consistency. 3-2
3.2E Cohesiveness. 3-23 3.2F Pragmatics. 3-2

4. ENTITY MANAGEMENT SUPPORT 4-1
4.1 Entities, Relationships, and Attributes 4-2

4.1A Data. 4-2
4.1B Elementary Values. 4-2
4.1C System Integrity. 4-2

4.2 Typing 4-2
4.2A Types. 4-3
4.2B Rules about Type Definitions. 4-3
4.2C Type Definition. 4-3
4.2D Changing Type Definitions. 4-3
4.2E Triggering. 4-3

4.3 Identification 4-4
4.3A Exact Identities. 4-4

3-393

DoD CAIS Requirements & Design Criteria 13 Sept 1985

4.3B Identification. 4-4

4.3C Identification Methods. 4-4

4.4 Operations 4-5

4.4A Entity Operations. 4-5

4.4B Relationship Operations. 4-5

4.4C Attribute Operations. 4-5

4.4D Exact Identity Operations. 4-5

4.4E Uninerpreted Data Operations. 4-5

4.4F Synchronization. 4-6

4.4G Access Control. 4-6

4.5 Transaction. 4-6

4.5A Transaction Mechanism. 4-6

4.5B Transaction Control. 4-6

4.5C System Failure. 4-6

4.6 History. 4-6

4.6A History Mechanism. 4-6

4.6B History Integrity. 4-7

4.7 Robustness and Restoration. 4-7

4.7A Robustness and Restoration. 4-7

5. PROGRAM EXECUTION FACILITIES 5-i

5.1 Activation of Program 5-2

5.1A Activation. 5-2

, Unambiguous Identificat',,. 5-2

5.1C Activation Data. 5-2

5.1D Dependent Activation. 5-2

5.1E Independent Activation. 5-2

5.2 Termination - I

5.2A Termination. 5-2

5.2B Termination of Dependent Processes. 5-2

5.2C Termination Data. 5-3

5.3 Communication 5-3

5.3A Data Exchange. 5-3

5.4 Synchronization 5-3

5.4A Task Waiting. 5-3

5.4B Parallel Execution. 5-3

5.4C Synchronization. 5-3

5.4D Suspension.
5-3

5.4E Resumption. 5-3

5.5 Monitoring 5-3

5.5A Identify Reference. 5-3

5.5B RTS Independence. 5-3

5.5C Instrumentation. 5-4

8. INPUT/OUTPUT 8-1

6.1 Virtual I/O Devices: Data Unit Transmission 6-2

3-394

I
DoD CA[S Requirements & Design Criteria 13 Sept 1985I

6.1A Hardcopy Terminals. 6-2

6.1B Page Terminals. 6-2

8.1C Printers. 6-2

6.1D Paper Tape Drives. 6-2

6.1,E Graphics Support. 6-2

6.1F Telecommunications Support. 6-2

.2 "nrtu, T/C() Devices: Data Block Transmission 6-2

6 8.2A Block Terminals. 6-2

6.2B Tape Drives. 6-2

6.3 Datapath Control 6-2

3 6.3A Interface Level. 6-2

6.3B Timeout. 6-3

6.3C Exclusive Access. 6-3

3 6.3D Datastream Redirection. 6-3

6.3E Datapath Buffer Size. 6-3

6.3F Datapath Flushi,g. 6-3

I 6.3G Output Datapath Processing. 6-3

6.3H Input/Output Sequencing. 6-3

6.4 Data Unit Transmission U-

I 6.4A Data Unit Size.

6.4B Raw Input/Output. 6-3

6.4C Single Data Unit Transmission. 6-3

I 6.4D Padding. 5-4

6.4E Filtering. 6-4

6.4F Modification. 6-4

6.4G Input Sampling. 6-4

6.4H Transmission Characteristics. 6-4

6.41 Type-Ahead. 6-4

6.4J Echoing. 6-4

6.4K Control Input Datastream. 6-4

6.4L Control Input Trap. 6-5

6.4M Trap Sequence. 6-5

84N Data Link Control. 6-5

8.5 Data Block Transmission 6-5

6.5A Data Block Size. 6-3

6.6 Data Entity Transfer 6-53 6.6A Common External Form. 6-5

6.6B Transfer. 6-5

6.7 General Input/Output 6-53 6.7A Waiting. 6-5

6.7B Unsupported Features. 5-5

I
I

3-39 5

I

DoD CAIS Requirements & Design Criteria 13 Sept 19S5

PREFACE

The KAYSE Interface Team (KIT), and its companion Industry-Academia team

(KITIA), were formed by a Memorandum of Agreement (MOA) signed by the three

strvices and the Undersecretary of Defense in January, 1982. Their purpczc is to

contribute to the achievement of Interoperability of application databases and

Transportability of software development tools ("I&T"). These are economic objectives

identified at the outset of the DoD common language initiative in the mid-1970's.

Progress toward fulfilling these objectives is now acknowledged to require a level of

commonality among Ada Programming Support Environments (APSEs), in addition to

the standard language Ada [Ada83). The core of the KIT/KITLA strategy to fulfill I&T

objectives is to define a standard set of APSE interfaces ("CAIS" for "Common APSE

Interface Set"), which augment the Ada language with the functionality needed to

implement tools, thus improving the ability to share tools and databases between

conforming APSEs. Note that a number of these Interfaces are at the Kernel APSE

(KAPSE) level, while others address a higher level of functionality. This document

establishes requirements and design objectives (called "criteria") on the definition of a
CAIS.

This document refines some of the DoD "Stoneman" Requirements for Ada

Programming Support Environments [BuxtonSO] and imposes them upon a CAIS

specification. The DoD "Steelman" Requirements for High Order Computer

Programming Languages [Fisher781 and the several sets of A1NSI "OSCRL"

requirements and design objectives for Operating System Command and Response

Languages OSCRL821 have also influenced this document.

3-396

I
DoD CAIS Requirements & Design Criteria 13 Sept 1985

1. INTRODUCTION]
1.1 Scope. This document provides the Department of Defense's requirements and

design criteria for the definition and specificat.ion of a Common APSE Interface Set

(CAIS) for Ada Programming Support Environments (APSEs).

I
1.2 Terminology. Precise and consistent use of terms has been attempted

throughout the document.

Potentially ambiguous terms used in the document are defined in the Glossary of

KIT/KITIA Terminology 1KK851. Some definitions tailored to the context of this

document are provided in the sections of the document where they are used.

Additionally, the toilowing verbs and verb phrases are used throughout the document to

indicate where and to what degree individual constraints apply. Any gentence not

containing one of the following verbs or verb phrases is a definition, explanation or

comment.

"SHALL" indicates a requirement on the definition of the CAIS; sometimes
"shall" is followed by "provide" or "support." in which cases the

following two defihiLions supersede this one.

3 "SHALL PROVIDE"
indicates a requirement for the C.AIS to provide interface(s) with

prescribed capabilities.

"SHALL SUPPORT"
indicates a requirement for the CAIS to provide interface(s) with

prescribed capabilities or for CAIS definers to demonstrate that the
capability may be constructed from CAIS interfaces.

I "SHOULD" indicates a desired goal but one for which there is no objective test.

I
I
I
I

i 3-397

DoD CAIS Requirements & Design Criteria 13 Sept 1985

1.3 Relationship to Specifications & Implementations. This document
specifies functional capabilitie: which are to be provided in the semantics of a CAIS
specification and are therefore to be provided by conforming CAIS implementations. In
general, the specifications of software fulfilling those capabilities (and decisions about I
including or not including CAIS interfaces for certain capabilities as suggested by the
"shall support" definition in the previous section) are delegated 'o the CAIS definers.
If a CAIS implementor determines that it is feasible, then the CAIS implementor may I
provide a particular specified CAIS facility by reusing other CAIS facilities, thereby
r.chieving a "layered implementation" of the CAIS. Therefore, the realization of a
specific CAIS implementation is the result of intentionally divided decision-making
authority among 1) this requirements document, 2) CAIS definers, and 3) CAIS
implementors.

1.4 Reference Documents.

MILITARY STANDARDS

[Ada831 Reference Manual for the Ada Language, ANSI/MIL-STD-1815A,
January 1983.

OTHER GOVERNMENT DOCUMENTS

[Buxton8O] "Stoneman" DoD 'kequirements for Ada Programming Support
Environments, February 1980.

[Fisher781 "Steelman" DoD Requirements for High Order Computer
Programming Languages, June 1978.

[KK85 Glossary of KIT/KITIA Terminology, draft 1985.

[TCSEC83[Trusted Computer System Evaluation Criteria, CSC-STD-001-83.
DoD Computer Security Center, August 15, 1983.

NON-GOVERNMENT DOCUMENTS

[OSCRL82 Operating System Command and Response Languages, proposed
ANSI standard drafts, 1982.

3-398 I
I

I
! DoD CAIS Requirements & Design Criteria 13 Sept 1985

2. GENERAL DESIGN OBJECTIVES

2.1 Scope of the CAIS. The CAIS shall provide interfaces sufficient to support
the use of APSEs for wide classes of projects throughout their lifecycles and to promote
I&T among APSEs.I
2.2 Basic Services. The CAIS should provide simple-to-use mechanisms for
achieving common, simple actions. Features which support needs of less frequently used
tools should be given secondary consideration.

I 2.3 Inplementability. The CAIS specification shall be machine independent and
implementation independent. The CAIS shall be implementable on bare machines and
on machines with any of a variety of operating systems. The CAIS shall contain only
interfaces which provide facilities which have been demonstrated in existing comme-cial
or military software systems. CAIS features should be chosen to have a simple and
efficient implementation in many machines, to avoid execution costs for unneeded
generality, and to ensure that unused portions of a CAIS implementation will not add

.to execution costs of a non-using tool. The measures of the efficiency criterion are,
primarily, minimum interactive response time for APSE tools and, secondarily,
consumption of resources.I
2.4 Modularity. Interfaces should be partitioned such that the partitions may be
understood independently and they contain no undocumented dependencies between
partitions.

I 2.5 Extensibility. The design of the CAIS should facilitate development and use of
extensions of the CAIS; i.e., CAIS inter:"aces should be reusable so that they can be
combined to create new interfaces and facilities.

2.8 Technology Compatibility. The CAIS shall adopt existing standards where
applicablt. For example, recognized standards for device characteristics are provided by
ANSI, ISO, IEEE, and DoD.

3-399

DoD CAIS Requirements & Design Criteria 13 Sept 1985

2.7 Uniformity. All CAIS features should uniformly address aspects such as status
returns, exceptional conditions, parameter types, and options. Different modules within
the CAIS should be specified to the same logical level, and a small number of unifying
conceptual models should underlie the CAIS.

2.8 Security. The CAIS shall provide interfaces to allow tools to operate within a i
Trusted Computer System (TCS) that meets the Class B3 criteria as defined in
[TCSEC83I. Specifically:

a. It shall be possible to implement the CAIS within a TCS.

b. When implemented within a TCS, the CAIS shall support the use of the 3
security facilities provided by the Trusted Computing Base (TCB) to
applications programs. 3

c. When not implemented within a TCS, the CAIS interfaces sensitive to
security shall operate as a dedicated secure system (i.e., all data at a single
security level, and all subjects cleared to at least that level).

I[
I
t
I
I
I
U
I

3-4 00 1

I

DoD CAIS Requirements & Design Criteria 13 Sept 1985

3. GENERAL SYNTAX AND SEMANTICSU
3.1 Syntax

.lA General Syntax. The syntax of the CAIS shall be expressed as Ada package
specifications. The syntax of the CAIS shall conform to the character set as defined by
the Ada standard (section 2.1 of ANSI/MEL-STD-1815A [Ada831).

3.1B Uniformity. The CAIS should employ uniform syntactic conventions and
should not provide several notations for the same concept. CAIS syntax issues
(including, at least, limits on name lengths, abbreviation styles, other naming
conventions, relative ordering of input and output parameters, etc.) should be resolved
in a uniform and integrated manner for the whole CAIS.I
3.1C Name Selection. The CAIS should avoid coiain new words (literals or
identifiers) and should avoid using words in an unconventional sense. Ada identifiers

(names) defined by the CAIS should be natural language words or industry accepted
terms whenever possible. The CAIS should define Ada identifiers which are visually

3 distinct and not easily confused (including, at least, that the CAIS should avoid defining
two Ada identifiers that are only a 2-character transposition away from being identical).
The CAIS should use the same name everywhere in the interface set, and not its
possible synonyms, when the same meaning is intended.

3.1D Pragmatics. The CAIS should impose only those restrictive rules or

constraints required to achieve I&T. CAIS implementors will be required to provide the
complete specifications of all syntactic restrictions imposed by their C.AS
implementations.

3.2 Semantics

3.2A General Semantics. The CAIS shall be completely and unambiguously

defined. The specification of semantics should be both precise and understandable.
The semantic specification of each CAIS interface shall include a precise statement of
assumptions (including execution-time preconditions for calls), effects on global data

and packages, and interactions with other interfaces.

I
I

3-4 01

DoD CAIS Requirements & Design Criteria 13 Sept 1985

3.2B Responses. The CAIS shall provide responses for all interface calls, including
informative non-null responses (return value or exception) for unsuccessful completions.
All responses returned across CAIS interfaces shall be defined in an implementation-
independent manner. Every time a CAIS interface is called under the same
circumstances, it should return the same response.

3.2C Exceptions. The CAIS interfaces shall employ the mechanism of Ada
exceptions to report exceptional situations that arise in the execution of CAIS facilities.
The CAIS specification shall include exceptions (with visible declarations) for all
situations that violate the preconditions specified for the CAIS interfaces. The CAIS
specification shall include exceptions (with visible declarations) that cover all violations
of implementation-defined restrictions.

3.2D Consistency. The description of CAIS semantics should use the same word or
phrase everywhere, and not its possible synonyms, when the sar'- meaning is intended.

3.2E Cohesiveness. Each CAIS interface should provide only one function.

3.2F Pragmatics. The CAIS specification shall enumerate all aspects of the
meanings of CAIS interfaces and facilities which must be defined by CAIS
implementors. CAIS implementors will be required to provide the complete
specifications for these implementation-defined semantics.

3-402

1
DoD CAIS Requirements & Design Criteria 13 Sept 1985

4. ENTITY MANAGEMENT SUPPORTI
Access controls and security rights will apply to all CAIS facilities required in this

section.

The general requirements for the CALS entity management support are the following.

a. There shall be a means for retaining data.

b. There shall be a way for retaining relationships among and properties of

data.

c. There shall be a way of operating upon data, deleting data, and creating

new data.

d. There shall be a means for defining certain operations and conditions as

legal, for enforcing the definitions, and for accepting additional definitions of

*legality.

e. There shall be a means to describe data, and there shall be a means to

operate upon such descriptions. Descriptions of the data shall be

distinguished from the data descrihed.

f. There shall be a way to develop new data descriptions by inheriting (some
of) the properties of existing data descriptions.

g. The relationships and properties of data shall be separate from the existence
of the data instances.

h. The descriptions of data and the instances of data shall be separate from the

tools that operate upon them.

This characterization (subsections 4.1 - 4.7) of Entity Management Support is based on

the STONEMAN requirements for a database, using a model based on the entity-

relationship concept. Although a CAIS design meeting these requirements is expected to
demonstrate the characteristics and capabilities reflected here, it is not necessary that
such a design directly employ this entity-relationship model.

I The entity-relationship model, for which definitions and requirements follow in 4.1 - 4.7,
fulfills these requirements, and any alternative data model shall fulfill these

requirements and shall also fulfill the equivalent of the requirements in 4.1 through 4.7.

3-403I

DoD CAIS Requirements & Design Criteria 13 Sept 1985

4.1 Entities, Relationships, and Attributes The following definitions, used in
this subsection, pertain to all the rest of section 4 also:

ENTITY a representation of a person, place, event or thing.

RELATIONSHIP an ordered connection or association among entities. A relationship
among N entities (not necessarily distinct) is known as an "N-ary"
relationship.

ATTRIBUTE an association of antentity or relationship with an elementary value.

ELEMENTARY VALUE
one of two kinds of representations of data: interpreted and
uninterpreted.

INTERPRETED DATA
a data representation whose structure is controlled by CAIS facilities
and may be used in the CAIS operations. Examples are
representations of integer, string, real, date and enumeration data,
and aggregates of such data.

UNINTERPRETED DATA
a data repru'entation whose structure is not controlled by CAIS
facilities and whose structure is not used in the CAIS operations.
Examples might be representations of files, such as requirements
documents, program source code, and program object code.

4.1A Data. The CAIS shall provide facilities for representing data using entities,
attributes or binary relationships. The CAIS may provide facilities for more general N-
ary relationships, but it is not required to do so.

4.1B Elementary Values. The CAIS shall provide facilities for representing data
as elementary values.

4.1C System Integrity. The CAIS facilities shall ensure the integrity of the CAlS-

managed data.

4.2 Typing The following definition, used in this subsection, pertains to all the rest
of section 4 also:

TYPING an organization of entities, relationships and attributes in which they

3-404

I
DoD CAIS Requirements & Design Criteria 13 Sept 1985

are partitioned into sets. called entity types, relationship types and

attribute types, according to designated type definitions.

4.2A Types. The facilities provided by the CAIS shall enforce typing by providing

that all operations conform to the type definitions. Every entity, relationship and

attribute shall have one and only one type.

i 4.2B Rules about Type Definitions. The CAIS type definitions shall

U s pecify the entity types and relationship types to which each attribute type

may apply

3 e specify the type or types of entities that each relationship type may connect

and the attribute types allowed for each relationship type

3 o specify the set of allowable elementary values for each attribute type

o specify the relationship types and attribute types for each entity type

o permit relationship types that represent either functional mappings (one-to-

I one or muay-to-one) or relational mappings (one-to-many or many-to-many)

o permit multiple distinct relationships among the same entities

i o impose a lattice structure on the types which includes inheritance of

attributes, attribute value ranges (possibly restricted), relationships and

* allowed operations.

4.2C Type Definition. The CAIS shall provide facilities for defining new entity.

m relationship and attribute types.

4.2D Changing Type Definitions. The CAIS shall provide facilities for changing
- type definitions. These facilities shall be controlled such that data integrity 's

maintained.i
4.2E Triggering. The CAIS shall provide a conditional triggering mechanism so

that prespecified procedures or operations (such as special validation techniques

employing multiple attribute value checking) may be invoked whenever values of
indicated attributes change. The CAIS shall provide facilities for defining such triggers
and the operations or procedures which are to be invoked.

3

3-4 05

:U

DoD CAIS Requirements & Design Criteria 13 Sept 1985

4.3 Identification The following definitions, used in this subsection, pertain to all

the rest of section 4 also:

EXACT IDENTITY
a designation of an entity (or relationship) that is always associated
with the entity (or relationship) that it designates. This exact

identity will always designate exactly the same entity (or

relationship), and it cannot be changed.

IDENTIFICATION
a means of specifying the entities, relationships and attributes to be
operated on by a designated operation.

4.3A Exact Identities. The CAIS shall provide exact identities for all entities.
The CAIS shall support exact identities for all relationships. The exact identity shall be
unique within an instance of a CAIS implementation, and the CAIS shall support a

mechanism for the utilization of exact identities across all CAIS implementations.

4.3B Identification. The CAIS --hall provide identification of all entities, attributes
and relationships. The CAIS shall provide identification of all entities by their exact
identify. The CAIS shall support identification of all relationships by their exact
identity.

4.3C Identification Methods. The CAIS shall provide identification of entities
and r---.t'Anships by at least the following methods:

" identification of some "start" entity(s), the specification of some relationship
type and the specification of some predicate involving attributes or attribute
types associated with that relationship type or with some entity type. This
method shall identify those entities which are related to the identified start
entity(s) by relationships of the given relationship type and for which the
predicate is true. Subject to the security constraints of section 2.8, all
relationships and entities shall be capable of identification via this method,
and all attributes and attribute types (except uninterpreted data) shall be
permitted in the predicates.

" identification of an entity type qr, relationship type and specification of some
predicate on the value of any attribute of the entity type or relationship
type. This method shall identify those entities or relationships of the given
type for which the predicate is true. Subject to the security constraints of
section 2.8, all attributes (except uninterpreted data) shall be permitted in
the predicates.

3-406

I
DoD CAIS Requirements & Design Criteria 13 Sept 19S5

4.4 Operations

4.4A Entity Operations. The CAIS shall provide facilities to:

3e create entities

9 delete entities

* examine entities (by examining their attributes and relationships)

* modify entities (by modifying their attributes)

* identify entities (as specified in Section 4.3)

4.4B Relationship Operations. The CAIS shall provide facilities to:

I * create relationships

* delete relationships

* examine relationships (by examining their attributes)

it . modify relationships (by modifying their attributes)

e identify relationships (as specifitJ in Section 4.3)

4.4C Attribute Operations. The CAIS shall provide facilities to:

* examine attributes

3* modify attributes

3 4.4D Exact Identity Operations. The CAIS shall provide facilities to:

* pass exact identities between processes

e compare exact identities

4.4E Uninterpreted Data Operations. The CAIS shall provide that use of the
input-output facilities of the Ada language (as defined in Chapter 14 of ANSI/Nfl.-
STD-1815A [Adat 'I) results in reading/writing an uninterpreted data attribute of an
entity. The facilities of Section 6 shallthen apply.

3-407

DoD CAIS Requirements & Design Criteria 13 Sept 1985

4.4F Synchronization. The CAIS shall provide dynan'ic access synchronrzat.ion
mechanisms to individual entities, relationships and attributes.

4.4G Access Control. The CAIS shall provide selective prohibition of operations
on entities, relationships, and attributes being requested by an individual.

4.5 Transaction. The following definition, used in this subsection, pertains to all
the rest of section 4 also:

TRANSACTION a grouping of operations, including a designated sequence of
operations, which rquires that either all of the designated cperations
are applied or none are; e.g., a transaction is uninterruptible from the
user's point of view.

4.5A Transaction Mechanism. The CAIS shall support a transaction mechanism.
The effect of running transactions concurrently shall be as if the concurrent transactions
were run serially.

4.5B Transaction Control. The CAIS shall support facilities to start, end and
abort transactions. When a transaction is aborted, all effects of the designated sequence
of operations shall be as if the sequence were never started.

4.5C System Failure. System failure while a transaction is in progress shall cause
th~e effects of the designated sequence of operations to be as if the sequence were never
started.

4.5 History. The following definitions, used in this subsection, pertain to all the
rest of section 4 also:

HISTORY a recording of the manner in which entities, relationships and
attribute values were produced and of all information which was
relevant in the production of those entities, relationships or attribute

values.

4.8A History Mechanism. The CAIS shall support a mech-nism for collecting and
utilizing history. The history mechanism shall provide sufficient information to support
comprehensive configuration control.

3-408

I
DoD CAIS Requirements & Design Crite:ia 13 Sept 1985

4.8B History Integrity. The CAIS shall support mechanisms for ensuring the
fidelity of the history.

4.7 Robustness and Restoration. The following definitions, used in this
subsection, pertain to all the rest of section 4 also:

BACKUP a redundant copy of some subset of the CAIS-managed data. The
subset is capable of restoration to active use by a CAIS
implementation, particularly in the event of a loss of completeness or
integrity in the data in use by implementation.

ARCHIVE a subset of the CAIS-managed data that has been relegated to
backing storage media while retaining the integrity, consistency and
availability of all information in the entity management system

I 4.7A Robustness and Restoration. The CAIS shall support facilities which
ensure the robustness of and ability to restore CAIS-managed data. The facilities shall
include at least those required to support the backup and archiving capabilities
provided by modern operating systems.

II
I
I

I

I

I

3 -409

3-.410

DoD CAIS Requirements & Design Criteria 13 Sept 198"

5. PROGRAM EXECUTION FACILITIES

Access controls and security rights will apply to all CAIS facilities required by thi

section.

The following definitions pertain specifically to this section:

PROCESS the CAIS facility used to represent the execution of any program.

U PROGRAM a set of compilation units, one of which is a subprogram called th(

"main program." Execution of the program consists of execution o:
the main program, which may invoke subprograms declared in the
compilation units of the program.

RESOURCE any capacity which must be scheduled, assigned, or controlled by thf
operating system to assure consistent and non-conflicting usage bs
programs under execution. Examples of resources include: CPU time

memory space (actuals and virtual), and shared facilities (variables
devices, spoolers, etc.).

U ACTIVATE to create a CAIS process. The activation of a program binds tha
program to its execution environment, which are the resource
required to support the process's execution, and includes the progran
to be cxecuted. The activation of a process marks the earliest poin,
in time which that process can be referenced as an entity within thf
CAIS environment.

TERMINATE to stop the execution oF a process such that it cannot be resumed.

DEACTIVATE to remove a terminated process so that it may no longer be reference(
within the CAIS environment.

SUSPEND to stop the execution of a process such that it can resumed. In th
context of an Ada program being executed, this implies the suspensio:
of all tasks, and the prevention of the activation of any task until th
process is resumed. It specifically does not imply the release of an
resources which a process has assigned to it, or which it has acquirec

to support its execution.

3 RESU.MvE to resume the execution of a suspended process.

TASK WAIT delay of the execution of a task within a process until a CAIS servic

g 3-411

DoD CAIS Requirements & Design Criteria 13 Sept 1985

requested by this task has been performed. Other tasks in the same
process are not delayed.

5.1 Activation of Program

5.1A Activation. The CAIS shall provide a facility for a process to create a process
for a program that has been made reziy for execution. This event is called activation.

6.1B Unambiguous Identification. The CAIS shall provide facilities for the

unambiguous identification of a process at any time between its activation and
deactivation; one such capability shall be as an indivisible part of activation. This act

of identification establishes a reference to that process. Once such a reference is
established, that reference will refer to the same process until the reference is dissolved.

A reference is always dissolved upon termination of the process that established the
reference. A terminated process may not be deactivated while there are references to

that process.

5.1C Activation Data. The CAIS shall provide a facility to make data available to
a program upon its activation.

5.1D Dependent Activation. The CAIS shall provide a facility for the activation
of programs that depend upon the activating process for their existence.

6.1E Independent Activation. The CAdS shall provide a facility for the activation
of programs that do not depend upon the activating process for their existence.

5.2 Termination

5.2A Termination. The CAIS shall provide a facility for a process to terminate a
procesr There shall be two forms of termination; the voluntary termination of a
process (termed completion) and the abnormal termination of a process. Completion of
a process is always self-determined, whereas abnormal termination may be initiated by
other processes.

5,2B Termination of Dependent Processes. The CAIS shall support clear,
consistent rules defining the termination behavior of processes dependent on a
terminating process.

3-412

i ii l I I I I I I II

I
DoD CAIS Requirements & Design Criteria 13 Sept 1985

5.2C Termination Data. The CAIS shall provide a facility for termination data to

be made available. This data shall provide at least an indication of success or failure

for processes that complete. For processes that terminate abnormally the termination

data shall indicate abnormal termination.I
5.3 Communication

5.3A Data Exchange. The CAIS shall provide a facility for the exchange/f data

i among processes.

5.4 Synchronization

5.4A Task Waiting. The CAIS shall support task waiting.

5.4B Parallel Execution. The CAIS shall provide for the parallel execution of
3 processes.

3 5.4C Synchronization. The CAIS shall provide a facility for the synchronizatior
of cooperating processes.

i 5.4D Suspension. The CAIS shall provide a facility for suspending a process.

3 5.4E Resumption. The CAIS shall provide a facility to resume a process that has
been suspended.I
5.5 Monitoring

5.5A Identify Reference. The CAIS shall provide a facility for a process to

determine an unambiguous identity of a process and to reference that process using that

Fidentity.

5.5B RTS Independence. CAIS program execution facilities shall be designed :o
require no additional functionality in the Ada Run-Time System (RTS) from that

provided by Ada semantics, Consequently, the implementation of the Ada RTS shall be3 independent of the CAIS.

I
3-413

i

DoD CA.IS Requirements & Design Criteria 13 Sept 1985

5.5C Instrumentation. The CAIS shall provide a facility for a process to inspect 3
and modify the execution environment of another process. This facility is intended to
promote support for portable debuggers and other instrumentation tools.

4
I
I
I
I
I
I

I
i

I
!

3-414 1

____ ____ ____ ____ ____ ____ __

I
DoD CAIS Requirements & Design Criteria 13 Sept 1985

6. INPUT/OUTPUT

Access controls and security rights will apply to all CAIS facilities required by this

section.

i The requirements specified in this section pertain to input/ovt. ut between/among

objects (e.g. processes, data entities, communication devices, and storage devices) unless

otherwise stated. All facilities specified in the following requirements are to be availabir3 to non-privileged processes, unless otherwise specified.

The following definitions pertain specifically to this section:
I BLOCK TERMINAL

a terminal that transmits/receives a block of data units at a time.

CONSUMER an entity that is recei-ing data units via a datapath.

i DATA BLOCK a senuence of one or more data units which is treated as an indivisible
group by a transmission mechanism.

I DATA UNIT a representation of a value of an Ada discrete type.

DATAPATH the mechanism by which data units are transmitted from a producer
to a consumer.

I DATASTREAM the data units flowing from a producer to a consumer (without regard
to the implementing mechanism).

U HARDCOPY TERMINAL
a terminal which transmits/receives one data unit at at time and does3 not have an addressable cursor.

PAGE TFRMINAL
a terminal which transmits/receives one data unit at at time and has

an addressable cursor.

i PRODUCER an entity that is transmitting data units via a datapath.

TERMINAL an interactive input/output device.

TYPE-AHEAD the ability of a producer to transmit data units before the consumer
requests the data units

3-415

DoD CAIS Requirements & Design Criteria 13 Sept 1985

8.1 Virtual I/0 Devices: Data Unit Transmission

G.1A Hardcopy Terminals. The CAIS shall provide interfaces for the control of
hardcopy terminals.

5.1B Page Terminals. The CAIS shall provide interfaces for the control of page
terminals.

6.1C Printers. The CAIS shall provide interfaces for the control of character-
imaging printers and bit-map printers.

6.1D Paper Tape Drives. The CAIS shall provide interfaces for the control of
paper tape drives.

6olE Graphics Support. The CAIS shall support the control of interactive
graphical input/output devices.

6.1F Telecommunications Support. The CAIS shall support a telecommunications
interface for data transmission.

6.2 Virtual I/O Devices: Data Block Transmission

8.2A Block Terminals. The CAIS shall provide interfaces for the control of
character-imaging block terminals. ,

6.2B Tape Drives. The CAIS shall provide interfaces for the control of magnetic
tape drives.

6.3 Datapath Control The requirements and criteria in this section pertain to both
data unit transmission and block transmission.

6.3A Interface Level. The datapath control facilities of the CAIS shall be provided
at a level comparable to that of Ada Reference Manual's File I/O. That is, control of
datapaths shall be provided via subprogram calls rather than via the data units
transmitted to the device.

3-416

I
I DoD CAIS Requirements & Design Criteria 13 Sept 1985

6.3B Timeout. The CAIS shall provide facilities to permit timeout on input and
output operations.

6.3C Exclusive Access. The CAIS shall provide facilities to obtain exclusive access
to a producer/consumer; such exclusive access does not prevent a privileged process
from transmitting to the consumer.

6.3D Datastream Redirection. The CAIS shall provide facilities to associate at
execution time the producer/consumer of each input/output datastream with a specific
device, data entity, or process.

5 6.3E Datapath Buffer Size. The CAIS shall provide facilities for the specification
of the sizes of input/output data path buffers during process execution.

6.3F Datapath Flushing. The CAIS shall provide facilities for the removal of all
buffered data from an input/output datapath.

5.3G Output Datapath Processing. The CAIS shall provide facilities to force the
output of all data in an output datapath.

6.3H Input/Output Sequencing. The CAIS shall provide facilities to ensure the
servicing of input/output requests in the order of their invocation.

£ 8.4 Data Unit Transmission

I 8.4A Data Unit Size. The CAIS shall provide input/output facilities for
communication with devices requiring 5-bit, 7-bit, and 8-bit data units, minimally.

8.4B Raw Input/Output. The C.dS shall provide the ability to transmit, receive
data units and sequences of units without modification. (Examples of modification are
transformation of units, addition of units, and removal of units).

3 8.4C Single Data Unit Transmission. The CAIS shall provide facilities for the
input/output of single data units. The completion of this operation makes the data
unit available to its consumer(s) without requiring another input/output event.

- including the receipt of a termination or escape sequence, the filling of a buffer, or the
invocation of an operation to force input/output.

3
3-4 17I

DoD CAIS Requirements & Design Criteria 13 Sept 1985

G.4D Padding. The CAIS shall specify the set of data units and sequences of units

(including the null set) which can be added to an input/output datastream. The CAIS
shall provide facilities permitting a p'rucess to select/query at execution time the subset

of data units and sequences of units which may be added (including the null set).

6.4E Filtering. The CAIS shall specify the set of data units and sequences of units
(including the null set) which may be filtered from an input or output datastream. The
CAIS shall provide facilities permitting a process to select/query at execution time the
subset of data units and sequences of units which may be filtered (including the null
set).

6.4F Modification. The CAIS shall specify the set of modifications that can occur to
data units in an input/output datastream (e.g., mapping from lower case to upper case).
The CAIS shall provide facilities permitting a process to select/query at execution time
the subset of modifications that may occur (including the null set).

8.4G Input Sampling. The CAIS shall provide facilities to sample an input
datapath for available data without having to wait if data are not available.

8.4H Tranamission Characteristics. The CAS shall support control at execution
time of host transmission characteristics (e.g., rates, parity, number of bits, half/full
duplex).

8.4I Type-Ahead. The CAIS shall provide facilities to disable/enable type-ahead.
The CAIS shall provide facilities to indicate whether type-ahead is supported in the
given implementation. The CAIS shall define the results of invoking the facilities to
disable/enable type-ahead in those implementations that do not support type-ahead
(e.g., null-effect or exception raised).

8.4J Echoing. The CAIS shall provide facilities to disable/enable echoing of data
units to their source. The CAIS shall provide facilities to indicate whether echo-
suppression is supported in the given implementation. The CAIS shall define the results
of invoking the facilities to disable/enable echoing in those implementations that do not
support echo-suppression (e.g., null effect or exception raised).

8.4K Control Input Datastream. The CAIS shall provide facilities to designate an
input datastream as a control input datastream.

3-418

I
I DoD CAIS Requirements & Design Criteria 13 Sept 1985

.4L Control Input Trap. The QAIS shall provide the ability to abort a process by

means of trapping a specific data unit or data block in a control input datastream of

that process.

3 8.4M Trap Sequence. The CAIS shall provide facilities to specify/query the data

unit or data block that may be trapped. The CAIS shall provide facilities to

I disable/enable this facility at execution time.

3 8.4N Data Link Control. The CAIS shall support facilities for the dynamic control

of data links, including, at least, self-test, automatic dialing, hang-up, and broken-link

handling.

u 8.5 Data Block Transmission

8.5A Data Block Size. The CAIS shall provide facilities for Lhe specification of the3 size of a sequence of units during program execution.

3 8.8 Data Entity Transfer

6.6A Common External Form. The CAIS shall specify a representation on
physical media of a set of related data entities (referred to as the Common External
Form).

I

8.8B Transfer. The CAIS shall provide facilities using the Common External Form
to support the transfer among CAIS implementations of sets of related data entities

such that attributes and relationships are preserved.

I 8.7 General Input/Output

I 8.7A Waiting. The CAIS shall cause only the task requesting a synchronous
input/output operation to await completion.

6.7B Unsupported Features. The CAIS should provide facilities to control the

consequences when the physical device does not have all of the features of the virtual

device.

3-419

DoD CAIS Requirements & Design Criteria 13 Sept 1985

RAC Comment Form

section: !RAC version: 13 Sept 1985

!submitter: !date:

!1-line topic/subject:

!extended comment or recommedt4ion:

!ratlonale for recommendation:

'disposition by RACWG:

[Send via ARPA/M:LNET to POberndorfMECLB & HMumm@ECLB,
or via U.S. Mall to "Patricia Oberndorf/Hans Mumm,

Code 423, NOSC, San Diego, CA 92152']

3-420

I
I
I

I Rationale

3 for the

DoD
Requirements

and
Design Criteria

I for the Common APSE Interface Set (CAIS)

I
I
I
3 13 September 1985

5Draft
Prepared for review by the

KAPSE Interface Team (KIT)

and the
KIT-Industry-Academia (KITIA)

3 and the
Ad&* Joint Program Office

Washington, D.C.

Ada Is a Registered Trademark of the U.S. Government,3 Ada Joint Program Office

I
I

i 3-42 1

Ratlonale for the RAC Draft 13 Sept 1985

5.4E Resumption. 5-11
5.5 Monitoring 5-II

5.5A Identify Reference. 5-11
5.5B RTS Independence. 5-12
5.5C Instrumentation. 5-12

6. INPUT/OUTPUT 6-I
8.1 Vtrtual I/O Devices: Data Unit Transmission 8-2

6.1A Hardcopy Terminals. 6-3
.1B Page Terminals. 8-3

V.1C Printers. 6-3
6.1D Paper Tape Drives. 6-3

.1E Graphics Support. C-4
8.1F Telecommunications Support. 8-4

6.2 Virtual I/O Devices: Data Block Transmission 8-4
6.2A Block Terminals. 6-5
8.2B Tape Drives. 8-5

6.3 Datapath Control 8-8
6.3A Interface Level. 8-6
8.3B Timeout. 6-8
8.3C Exclusive Access. 8-7
6.3D Datastream Redirection. 6-7
5.3E Datapath Buffer Size. 5-7
6.3F Datapath Flushing. 8-8
8.3G Output Datapath Processing. 8-8
6.3H Input/Output Sequencing. 6-8

6.4 Data Unit Transmission 5-9
6.4A Data Unit Size. 8-9
6.4B Raw Input/Output. 8-9
6.4C Single Data Unit Transmission. 8-10
6.4D Padding. 6-10
6.4E Filtering. 8-10
6.4F Modification. 8-11
6.4G Input Sampling. 8-11
8.41 Transmission Characteristics. 8-11
8.41 Type-Ahead. 8-12
6.4J Echoing. 8-12
6.4K Control Input Datastream. 8-12
6.4L Control Input Trap. 8-13
6.4M Trap Sequence. -13
6.4N Data Link Control. 6-13

6.5 Data Block Transmission -14
6.5A Data Block Size. 8-14

6.8 Data Entity Transfer 6-14
6.SA Common External Form. &.14
6.6B Transfer. 8-14

6.7 General Input/Output 8-15
8.7A Waiting. 5-15
5.7B Unsupported Features. 8-15

3-422

U Rationale for the RAC Draft 13 Sept 1985

I PREFACE

This Rationale document accompanies the document titled "DoD Requirements and Design Criteria for

the Common APSE Interface Set" (RAC), dated 13 September 1985.

The purpose of this document is to provide, for each requirement and design criterion in the RAC, any or
all of the following as appropriate:

3 explanations or clarifications of KIT/KITLA intent

e exposition of alternatives considered and the reasoning for the requirement or design criterion

in the RAC

* examples

e identification of known constraints on CAIS specifications and implementations.

The structure (outline) of this Rationale document is identical to that of the RAC document of the same

date. Each requirement and design criterion from the RAC appears in italics in this Rationale document.

Rationale for each is in aormal type.

I
I
I
I

I
I

I
I
I

3-423I

Rationale for the RAC Draft 13 Sept 1985

1. INTRODUCTION

1.1 Scope. 71is document provides the Department of Defense 'a requirements and desimgn criteria
for the definition and specification of a Common APSE Interface Set (CAIS) for Ada Programming
Support Environments (APSEs).

1.2 Terminology. Precise and consistent use of terms has been attempted throughout the
document.

Potentially ambiguous terms used in the document are defined in the Glossary of KIT/KTIA
Terminology /KK85. Some definitions tailored to the context of this document are provided in the
sections of the document where they are used.

Additionally, the following verbs and verb phrases are used throughout the document to indicate where
and to what degree individual constraints apply. Any sentence not containing one of the following
verbs or verb phrases is a definition, explanation or comment.

'SHALL" indcates a requirement on the definition of the CAIS; sometimes "shall" is followed
by "provide" or 'support," in which cases the following two definitions supersede this
one.

'SHALL PROVIDE'
indicates a requirement for the CAIS to provide interface(s) with prescribed

capabilities.

'SHALL SUPPORT'
indicates a requirement for the CAJFS to provide interface(s) with prescribed
capabilities or for CGAS definers to demonstrate that the capability may be
constructed from CAIS interfaces.

"SHOULD' indicates a desired goal but one for which there is no objective test.

3-424

I Rationale for the fLAC Draft 13 Sept 1985

1 1.3 Relationship to Specification. & Implementations. This document specifies functional
capabilities which are to be provided in the semantics of a CA-IS specification and are therefore to be
provided by conforrning CA.S implementations. In general, the specifications of sofwa~e fulfilling
those capabilities (and decisions about including or not including CAIS interfaces for certain
capabilities as suggested by the 'shall support" definition in the previous section) are delegated to the
CAIS definers. If a CAIS implernentor determines that it is feasible, then the CAIS irnplementor may
provide a particular specified CArS facility by reusing other CAJS facilities, thereby achieving a
'layered implementation' of the CAIS. Therefore, the realization of a specific CAIS implementation
is the result of intentionally divided decision-making authority among 1) this requirements document,3 f) CAIS definers, and 3) CAIS implementors.

31.4 Reference Documents.

MILITARY STANDARDS

iAda83' Reference Manual for the Ada Language, ANSI/MIL-STD-1815A, January 1983.

I OTHER GOVERNMENT DOCUMENTS

/BuztonO : "Stoneman" DoD Requirements for Ada Programming Support Environments,3 Feb-uary 1980.

lfisher78 'Steelman" DoD Requirements for High Order Computer Programming Languages,1 June 1978.

[KK85j Glossary of KIT/'KITIA Terminology, draft 1985.

I TCSEC83.' Trusted Computer System Evaluation Criteria, CSC-STD-01-83, DoD Computer

Security Center, August 15, 1983.

I NON-GOVERNMENT DOCUMENTS

,JOSCRL82/ Operating System Command and Response Languages, proposed A%'SI standard1drafts, 1982.

I
U
I

I
1 3-425

Rationale for the RAC Dr-Af 13 Sept 1985

2. GENERAL DESIGN OBJECTIVES

2.1 Scope of the CAIS. The CAJS shall provide interfaces sufficient to support the use of
APSEs for Unde classes of projects throughout th,ir hIfecycles and to promote I&T among A.PSEs.

2.2 Basie Services. he CAIS should provide simple-to-use mechanisms for achieving common,
simple actions. Featurce which support needs of lees frequently used tools should be given secondary
consideration.

2.3 [mplementability. The CAIS specfication shall be machine independent and implementation
i ndependent. The GAlS shall be implementable on bare machines and on machines with any of 4
variety of operating systems. The CAIS shall contain only interfaces which provide facilities which
have been demonstrated in existing commercial or military software systems. CA.S featuree should be
chosen to have a simple and efficient implementation in many machines, to avoid execution costs for
unneeded generality, and to ensure that unused portions of a CAJS implementation will not add to
execution costs of a non-using tool. The measures of the efficiency criterion are, prirmarily, minimum
interactive response time for APSE tools and, secondarily, consumption of resources.

2.4 Modular'ty. Interfaces should be parti'oned such that the pa- titions may be understood
independently and they contain no undocumented dependencies between partitions.

2.5 Extensibility. The design of the CAIS should facilitate development and use of extensions of
the CAIS; .e., CAIS interfaces should be reusable so that they can be combined to create new interfares
and facilities.

2.5 Teehnniogy Compatibility. The CAIS shall adopt existing standards where applicable. For
example, recognized standards for detic, characteristcrs are provided by ANSI, ISO, IEEE, and DoD.

2.7 Uniformity. All CAlS features should uniformly address aspects such as status returns,
exceptional conditions, paraneter iypes, and options. Different modules within the CAIS should be
specified to the same logical level, and a small number of unifyini conceptual models should underlie
the CAIS.

2.8 Secur ty. The CAIS shall provide interfaces to allow t'ols to operate within a Trusted
Computer System (TCS) t.at meets the Class B8 criteria as defined in rCSEC83' Specifically:

a. It shall be possible to implement the CAIS ithin a TCS.

6. When implemented within a TC7, the CAIS shall support the use of the security facilities
provided by the Trusted Computing Base ('CB} to applications prog-rams.

3-4 2b

Rationale for the RAC Draft 13 Sept 1985

I e. When not implemented within a TCS, the CA-IS interfaces sensitive to aeo-urity shall operate
as a dedicated secure system (i.e., all data at a single security level, and all subjects cleared
to at least that level).

This requirement recognises that the CAIS must co-exist within the DoD policy for the handling of
classified and sensitive information. The "DoD Trusted Computer System Evaluation Criteria*
[TCSECS31 is one of the baseline technical documents that delineate the security requirements for future
DoD (and DoD contractor) systems that will handle sensitive data. Ads programming support
enviornments used to develop an6 maintain mission critical systems clearly fall into this category.

The B3 level was chosen because it is the level th,: has the most complete set of functional security
requirewents. This mandate forces the CAIS to accommodate a formal notion of security (specifically,
but not exclusively, the DoD security model).

It is important to note that it is not necessary that all conforming implementations meet the B3 level
security criteria. However, it is necessary that a !ystem that does meet the B3 level security criteria be
able to host a conforming CAIS implementation. funclear?] Additiionally, the CAIS should accommodate
implementations that coexist with (without compromising) and operate within a variety of security

mechanisms.] In other words, a principal intention of these security requirements is to constrain the
design of the CAIS in such a manner so as to not technically preclude a B3 TCB a.s a host, and to permit
such a CAIS implementation itself to achieve a B3 certification.

The following is a specific example of a constraint on the specification (design) of the CAIS, without

which attaining a B3 certification is impossible:

* The CAIS shall be designed to mediate all tool access to underlying system services.

I.e., "by.-passing" the conforming CAIS implementation is unnecessary to implement any APSE function.

This should not be interpreted as making it impossible for for tool builders to *by pass" the CAIS for
underlying system services - only that any tool builder who wishes to build a more transportable,

interoperable tool will rind sufficient interfaces in the CAIS to avoid "by passing".

It is inappropripte for the RAC to specifically "List" security features or requirements. There are two

reasons:

a. :TCSEC83! already serves as a complete reference for such guidA-li.-, -.. d

I b. any such list might be incomplete and thus fall short of meeting the intent of supporting MLS-
TCB hoots as defined in TCSEC831.

l There are several DoD programming support enviroaments in operation today that accommodate various
forms of multi-level modes of processing by recognizing security labels on system objects. Some will, to a

degree, enforce a mandatory policy. The B3 criteria delineated in 'TCSEC83' embodit the "best

technical" requirements for future DoD APSE hosts.

I
! 3-4 27

Rationale for the RAC Draft 13 Sept 1985

3. GENERAL SYNTAX AND SEMANTICS

3.1 Syntax

S.A General Syntax. The syntax of the CAIS shall be expressed as Ada package specifications.

The syntax of the CAIS shall conform to the character set as defined by the Ada standard (section 8.1
-' U VtSI/.MIL-STD-1815A /Ada 8.).

S.IB Uniformity. The CAIS should employ uniform syntactic conventions and should not provide
several notations for the same concept. CAIS syntax issues (including, at least, limits on name
lengths, abbreviation styles, other naming conventions, relative ordering of input and output

parameters, etc.) should be resolved in a uniform and integrated manner for the whole CAIS.

SAC Name Selection. The CAIS should avoid coining new words (literals or identifiers) and
should avoid using words in ar. unconventional sense. Ada identifiers (names) defined by the CAIS
should oe natural language words or industry accepted terms whenever possible. The CAIS should
define Ada identifiers which are visually distinct and not easily confused (including, at least, that the

CAIS should avoid defining two Ada identifiers that are only a 2-character transposition away from
being identical). The CAIS should use the same name everywhere in the interface set, and not its

possible synonyms, when the same meaning is intended.

SAD Pragmatica. The CA.S should impose only those restrictive rules or constra.nts required to
achieve I&T. CAIS implmentors will be required to provide the complete specifications of all syntactic
restrictions imposed by their C .. IS implementations.

S.2 Semantics

2.2A General Semantics. The CAIS :hail be completely and unambiguously defined. The
specification of semantics should be both precise and understandable. The semantic specification of
each GAS interface shall include a precise statement of assumptions (including exection-time
preconditions for calls), effects on global data and packages, and interactions with other interfaces.

3.2B Responses. The CAS shall provide responses for al: interface calls, including infor'native

non-null responses (return value or exception) for unsuccessful completions. All responses returned

across CA-IS interfaces shall be defined in an implementat-on-independent manner. Every time a
CAtS interface is called under the same circumstances, it should return the same response.

2.2C Exceptions. The CAIS interfaces shall employ the mechanism of Ada exceptions to report
exceptional situations that arise in the execution of CAIS facilities. The CAIS specification shall
include exceptions (uith visible dec;2rations) for all situations that violate the preconditions specified

for the CAS interfaces. The CAIS specification shall include exceptions (with vauib,e declarations)
that e -ver all violations of implementation-defined restriettone.

3-428

Rationale for the RAC Draft 13 Sept 1985

I 3.2D Consistency. The description of CAIS semantics should use the same word or phrase
everywhere, and not its posable synonyms, when the same meaning i's intended.I
3.2E Coheslveness. Each CAIS interface should provide only one function.

9 3.2F Pragmatics. The CAIS specification shall enumerate all aspects of the meanings of CAIS
interfaces and facilities which must be defined by CAIS impie.nentors. CGAS implementors will be
r3eqired to provide the complete specijications for these implementation-defined semantics.

3
I
I
I

I

I
I
I
I

I
i 3-4 29

Rationale for the RAC Draft 13 Sept 1985

4. ENTITY MANAGEMENT SUPPORT

4. ENTITY MANAGEMENT SUPPORT

The general capabilities of the model specified by the CAIS are the following. The entity-relationship
model, for which definitions and requirements follow in 4.1 .. 4.7, provides these capabilities and any I
elternative model of C.4! 5 requirements must also.

a. There shall be a means for retaining data I
b. There shall be a way of retaining relationships among and properties of data.

This section uses the term data in a general (or generic) sense, to set out general requirements on the I
CAIS for facilities for data. In the following sections, a specific model is used for the 'tructuring of that
data ir order to specify more specific requirements. 5
Software projects deal with a great deal of data. Facilities for wanagement of this data are a central
feature of the CAIS. The CAIS acts as the repository for all information associated with each project

throughout the project life-cycle.

A software project involves many pieces or items of data. Note that there is no intention here to imply

any particular granularity of the treatment of data, by the use of the words, pieces or items. These terms 3
are used in a simple colloquial sense. Pieces of data may or may not be composed of other pieces, and so
until the ultimate binary digit (bit) of data is reached. Similarly pieces of data might be aggregated into
other pieces, and these aggregations may or may not intersect. The structure of data is considered in I
subsequent sections.

Data might include the text of a piece of program source, or test data, or documentation or a schedule.
Data might also be the date a piece of test was created, the name of the author, the permitted areas, or
information as to what piece of data some object code was compiled from, or which pieces of data contain
other pieces of data. 3
The data model supports the way that the environment user and tools view project data. It is important
that the capabilities provided to do this support a natural expression of the data that closely models the

user's understanding of the problem that he is working on. This includes the ability to represent the I
objects that the user is interested in and to represent the relationships among these objects to describt the
dependencies between these objects. I

e. Theve shall be a way of operating upon data, deleting data, and creating new data. I

There are many kinds of operat:-^-is on data - data may be created, changed, exec-.tA, written to and
used. These terms are used here in a general colloquial sense to illustrate the kinds of things that will be

required. More specific operations are considered in terms of the model discussed in the next section.

3-430 1
I

Rationale for the RAC Draft 13 Sept 1985

i Specific operation on data, and sets of specific operations, are an important constituent of the CAIS.

U
I

d. There shall be a means fo, d-fining certain operations and conditions as legal, for enforcing the
I definitions and for accepting additional definitions of legality.

e. There shall be a means to describe data, and there shall be a means to operate upon such descriptions.3 Descriptions of the data shall be distingished from the data described.

An important aspect of data management, which is more widely recognized as a crucial aspect of modern
programming languages, is the separation of the structure and rules about data from the data itself. This

concept is so widely accepted for programming languages that it is not normally felt necessary to justify
it, however some of the main reasons are rehearsed here.

First, data is not normally operated on by only one user, but is operated on by many users. Making its
structure, and the rules about the data explicit mean that the several users have a single common
understanding about the nature of the data.

Secondly, in any reasonable software project, there will be a large number of different kinds of data and a
large number of specific operations. The great majority of the operations will *make sense' from a
human viewpoint only when applied to a very small number of the kinds of data. It may not be unduly
restrictive to specify that individual operations must apply to a single kind of data. Unfortunately, a user
may by mistake, or with malice, request any operation on any piece of data. Thus typos, misspellings,
and other slips of the fingers or mind can result in requests to comrile a tape drive or sort a progress

report. An important goal of the facilities offered by the CAIS interface is to minimize the effects of
human fallibility by refusing to perform operations that do not make sense. Note that the specific
examples of inappropriate operations given above are only intended as illustrations. It is not intended to
imply here that these particular operations either should or should not be allowed. Specific requirements
on enforcement of legality are considered later.

3 The definitions of what is legal in a system originate entirely with the people who design and build it; the
system really only enforces their decisions. In most software systems, the rules re complex,
contradictory, an largely unknown because they are created as by-products or unforeseen effects of
decisions about efficiency, usability, or other concerns. It is a goal of the CAIS to make the rules
governing the data and operations of a programming project as explicit and straight-forward as possible,
while allowing them to be specified on an individual, company or project level.

I Third, there is a need to selectively allow or prohibit certain operations on certain data requested by
certain users or processes. Some specific examples of the kind of thing intended are given below, without
intending any specific implication that exactly these facilities either should or should not be supplied.

We may consider that Configuration Control includes the ability to prevent change operations on
particular data by particular users or processes. That is, it is the ability to "freese" parts of the
developing system such that work can proceed on other parts without needing to be concerned about
changes in the frozen parts. For example, a working version of the rile manager of a system may be
frozen so that applications code that uses the file man.-ger can be written Lad tested.

£ 3-431

Rationale for the RAC Draft 13 Sept 1985

Prohibition of operations rarely needs to be universal - applied to all users or processes. It should not
generally make it impossible to perform a particular operation if that operation would otherwise be legal;
there should always be at least one user/process who can change the data, or at least change the
prohibitions or otherwiv do some operations that make change possible.

Security includes the ability to prevent change, transformation or use of certain data by certain users or
processes. That is, it is the ability to prevent their finding out anything about the data that they do not
already know. Th;- -- y include the fact of the data item's existence as well u the data itself.

Note that a number of different aspects of the structure of, and rules about, data are intentionally
considered here as different aspects of a single underlying concept. For example, the idea that a read-
integer operation is not allowed on a piece of data which represents an author-name is a simple form 3f
what may be called data typing. This would not be allowed irrespective of the user or process which
attempted the operation, and may perhaps in some situations be simply thought of, in terms of Ad&, in
the syntactical form of a procedure specification. Security, or access control is based on the piece of data
to be accessed and the user or process which is accessing it, and :A less static than what was called data
typing, but is nevertheless not algorithmically complex. The system can provide a fLxed set of facilities,
which are parameterized, by users/processes as they wish, to implement these controls. Still other aspects

of rules may be based on fixed sets of rules, parameterized as needed, while finally for some rules,
facilities for specifying the algorithms which constitute the rules may be needed. These facilities are all
regarded as different aspects of a single underlying concept, and the way in which they are provided is
regarded as a specification n(or even implementation) detail of the CAIS.

f. There shall be a way to develop new data descriptions by inheriting (some of) the properties of

existing data descriptions.

It is desirable to be able to derive new descriptions from exiting ones. This results from the observation
that there are natural ways in which some items of data are related to others and the conviction that the
support mechanisms should conform to this natural *way of the world'. While it is possible to develop
such new descriptions independently of the existing ones, there are many advantages to providing support
for this within the entity management mechanisms. If there is an orderly, supported means for deriving
such related descriptions, the process will not be an ad hoc one prone to the errors and problems of ad
hoc processes. The ability to inherit properties of the descriptions also will reduce the proliferation of
independent relationships and properties in the entity base. Perhaps most importantly, this capability will
make it easier for users and projects to tailor the entity system to their own needs and to organize the
structures of their data in natural ways.

g. The relationships and properties of data shall be separate from :he ezistence of the data instances.

This requirement is to establish the distin-tion between the abstract concer't of a particular item of data,
and the particular relationships in which it participates, or the particular values of any of its properties.

3-432

Rationale for the RAC Draft 13 Sept 1985

3 "As an example, we may have a data instance which represents a particular person. This requirement
requires that the particular data instance continues to exist (and therefore to represent the same person)
even if particular recorded properties of that person (e.g. his name, age, address, date of birth) are
changed, in fact even if every piece of information about the person is changed. Thus the identity and
persistence of an item of data is distinguished from, and potentially lasts longer in time than, the
particular values of any of its properties or relationships. That is, the values of the relationships and
properties may change over time without changing the data item itself.

Another example is that data in a file might be changed without changing the identity of the file (of
course in a particular system, other rules such as security, consistency or integrity rules may prevent
this).

The requirement says nothing about how the identity of a particular data instance is to be estiblisbhed.
One way might be to have pointers or handles within a particulir execution of a prgram which can refer
to data instances, and to be able to enquire whether the data instance referred to by ont handle is the
same as that referred to by another handle. Another way might be to have system assigned unchangeable
unique keys for each data instance (these are known in the database world as surrogates). Note that these
examples are intended only to aid understanding the concepts intended here, and no conclusions should be
drawn from the use of these examples.

h. The descriptions and the instances of data shall be separate from the tools which operate upon them.

This requirement is to ensure that the information and knowledge regarding relationships and properties
ana their interpretations is controlled within the EMS an ,4 is not embedded in tools which are external to
the EMS. This is in some ways a rurther constraint on requirement e. Requirement e states that the

descriptions of data should be distinguished from the data, and this says that both the data and the
descriptions should be separate from the tools.

All knowledge of the structure of the data items must be retained within the EMS, as opposed to any
external tools. It may always be the case that tools may ascribe some additional meaning to a particular

property or relationship, but the relationships and properties of general interest are not permitted to be
defined strictly in tools which are external to the EMS. This constitutes a decision that all information3 about the data will be retained and controlled by the EMS.

U
The following characterization (subsections 4.1 - 4.7) of Entity Management Support (EMS) is based on
the 52 'NEMAX r-quirements for a database, using a model based on the entity-relationship concept.
Although a CAIS deskgn meeting these requirements is expected to demonstrate the characteristics and
capabilities reflected here, it is not necessary that such a design directly employ this entity-relationship
model. The entity-relationship model for which delinitio.s and requirements follow in 4.1 - 4.7 fulfills

I these requirerrents (a-h above), and any alternative data model shall fulfill these requirements and
shall also fulfill the equivalent of the requirements in subsections 4.1 through 4.7.

In order to state some more specific requirements that the CAIS shall satisfy, it is necessary to specify a

particular data model within which those requirements may be expressed.

3-433

Rationale for the RAC Draft 13 Sept 1985

Note that the term data model is sometimes used in two distinct senses. First, it is used to refer to the
way in which data is structured, for example the network model, the hierarchical model, the relational
model and the E-R model. Second, it is used to refer to a particular schema to represent the things of
interest in the environment, which are modeled within the facilities of a data model of the first sort. The
term data model is used in the fia;t sense here.

It is important to note that it is intended that the data model used should only be regaried as a model or
notational scheme, and it is not intended that it should constrain the CAlS specification to follow the

same model.

The data storage and manipulation needs of a software project can be modeled as an "Entity
Management System."

Software projects deal with a great many collections of data, devices, people, and other things which need
to be treated as single units; the representations of these in the computer are given the abstract title
"entities." A computer-based system for storing, naming, and manipulating entities is called an "Entity
Management System."

Much of the CAIS work has had the underlying assumption that the typical flat or hier..Chical file
system found in a modern computer system is inadequate for the needs of software development projects.
This assumption originates in the fact that most projects and companies are forced to supplement the file
system's facilities with additional functions, tools, and conventions to be able to do their job. For
example, an attempt is often made to give files a "type' that indicates the general form of their contents
by establishing an naming convention. Files containing Pascal source code are required to have a name of
the form xxxx.pas, where xxxx is the user-meaningful name of the rile. It may be that the Pascal compiler
will only accept for input files whose name is of this form. The convention reduces by four then number
of characters that a user can use to make a file name meaningful (-.pas') and is far from foolproof. The
RAC makes typing an intrinsic part of the ie system, and thus eliminates these and other problems. The
knowledge about the structure of the data is controlled within the EMS and is not embedded in the tools

or anywhere else.

This section of the RAC discusses the use of an EMS model to present the general requirements of

software development and maintenance in this area. It is recognised that u-e of a model in stating
requirements could tend to bias the developers in undesirable ways toward implementations similar to the

model. However, after great effort, it was felt that a model-less, bias-free stateinent of the requirements
was b .yond our abilities; the resultinh, statements became so general as to lose all meaning.

4.1 Entities, Relationships, and Attributer

In order to expres* the requirements for the CAIS, it proved necessary to have a very precise model of the
way terms were used.

We make two orthogonal distinctions, leading to four separate concepts.

First, we diqtinguish between things in the real world, and their representation in the computer.

3-434

Rationale for the RAC Draft 13 Sept 1985

USecond, we distinguish between the abstract concept of a thing and its observed or manipulable

information. (This distinction has been known for centuries - for example Aristoteles, Peri Hermenelas (de
Interpretatione) approx 350 BC, but unfortunately it seems to be necessary for each generation toI_ rediscover it for itself, see Borgida, IEEE Software Vol 2 No 1 pp 63-72)

-- Considering the four categories in turn, we have first, things in the real world, for example a person3_ named *John Smith'. Note that we are concerned here with the abstract concept of this particular
person. He may change his name, he may or may not be physically present when we talk about him, but
the abstract concept of this particular person is quite separate from the information we may have about
him. Similarly, we may have the abstract concept of "the piece of Ada Source code that I typed in at
11am yesterday'. Although the Ada source exists in the machine, the concept exists (also) in the real
world. Thus we may know many more facts about the real world thing than are actually recorded in the
computer (for example, we may know that we had a feeling that the code was wrong when we typed it in,
or that we copied it from a particular book, but these facts may not be recorded in the computer).
Similarly, we may have a particular project u a real world conceptual thing.

3Next, there are facts that we can observe in the real world about these things, such as a particular
person's name, age, height, weight etc., or who typed in a particular piece of software.

Next, we have the representation of the abstract concept of a thing in the computer. This is known as an
"entity'. This may be considered as an instance of an abstract data type. It is quite separate from the
data values that may be recorded about it, indeed you can do nothing with such instances, except apply
the operations of the type.

Finally, we have the facts recorded in the computer system about entities - these are known as attributes.

Note that relationships are a quite separate concept from the four way distinction made here.

3 The following definitions, used in this subsection, pertain to the remainder of section 4 also.

ENT1YA representation of a person, place, event or thing.

5 Entities in a software project may be representations of such things in the real world as people, places,
machines, source code, test data, documentation or schedules.

RELATIONSHIP An ordered connection or association among entities. A relationship among N
entities (not necessarily distinct) is known as an 'N-ary' relationship.

In a software project, *compiled from', *referenced in', or 'contains" may be examples of relationships
between entities.

The EMS holds relevant inormation concerning er.tities and relationships in which the users of the
environment is interested. A complete description of the 'eal-world item represented by an entity or
relationship might not be recorded within the EMS. It is impossible (and, perhaps, un,.!cessary) to record
every potentially available piece of information about entities and relationships. From now on, we shall
consider only the entities i relationships (and the information concerning them) which are to enter into
the design of the data held by the EMS.3 A7TRIBLTE An association of an entity or relationship with an elementary value.

The information about an entity or a relationship is obtained by observation or measurement and Ls
expressed by associations with values. "3', 'red', 'Johnson', '3.14159', and

3-435I

Rlationale for the RAC Draft 13 Sept 1985

*declare
X. INTEGER

begin

end*

are all examples of values.

ELEMEN7TARY VALUE One of two kinds of representations of data: interpreted and uninterpreted.

INTERPRETED DATA data representation whose structure is controlled by EMS facilities and may be
used in the EMS operations. Examples art representations of intege-, string, real,
date, and enumeration data, and aggregates of such data.

UNINTERPRETED DATA A data representation whose structure is not controlled by EMS facilities
and whose structure is not used in the EMS operations. Examples might be
representations of files Such as requirements documents, program source code, and
program object code.

Regarding UNINTERPRETED DATA: This is a special category where we permit(admit) data structure
knowledge to be maintained outsie of EMS.

4.A Data.

The E'S shall provide facilities for representing data using entities, attributes, or binary
relationships. The EMS may provide facilities for more general N-ary relationships, but it is not
required to do so.

A software project involves many kinds of entities, relationships of entities, and attributes of entities and
relationships, all of which must be stored and made available. For example, program source, test data,
documentation, and schedules may all be represented by entities; date created, author, storage format,
and access allowed may be attributes of an entity; 'compiled from,* *referenced in,' and 'contains" may
be relationships between entities; and 'date compiled' may be an attribute of a relationship. In current
projects, attributes and relationships of a rile are often embedded in its contents or name, and thus are
vulnerable to editors and renaming utilities. For example, projects often require that the names of
progrxmmers who have modified a source file be kept as comments near its beginning. An EMS-based
system could keep them as attributes o., if programmers are represented by entities in 'he system, as
relationships. This would be both more convenient and less vulnerable.

Attributes are 'modifiers.' "descriptors,' or 'explainers' of an entity or relationship. Examples are the
date an entity or rel2tionship was created, the name of the creator, or the reason it was created.
Attributes h.'e a name and a value; values are numbers, names (enumeration variables), or character
sequences, or lists thereof. (However, see the discussion of "interpreted" and 'uninterpreted' data in 4.IA
below.)

3-436

Rationale for the R.AC Draft 13 Sept 1985

I Relationships are 'connections' or *associations' from one entity to another. Examples are source code
to object code, old to new revision of a document, and owner user to owned entity. Relationships may be

functional mappings (one-to-one or many-to-one) or relational mappings (one-to-many or many-to-many)
and may have attributes.

Deleting an entity also deletes all of those attributes that belong to it. The definition of a relationship as
an ordered connection or association among entities automatically implies that when an entity is deleted,
the relationship ceases to exist, as the entities which were associated are no longer present.

At least some entities represent those collections of data that we normally think of as 'files' or "data
sets, They may consist of multiple records in a given format or of undifferentiated sequences of
characters or bits. Examples are source files, test results, cross-references, and schedules. These entities
have 'contents' and may have attributes and relationships. Other entities may represent hardware
devices, either actual or virtual, groupings of entities for purposes like naming, users of the system, and
units of execution ('jobs" or "processes').

I This paragraph uses the notion of "contents," which is not properly part of the RAC. It suggests that
'files* are a 'property' of entities in a different way to attributes. In contrast, the RAC uses the
concept of "attribute" to represent all values: the source text of a program is held as an attribute whose
elementary value may be uninterpreted data, while a date may be held in an attribute whose elementary

value is interpreted data.

I
a

S4.1B Elementary Values

The EMS sh Al provide facilities for representing data as elementary values.

I "Lnterpietcd data' might be thought of as 'system data' and 'uninterpreted" as ". cz uta.' The

differentiation is made to point out that the former kind is *looked at* by the EMS and the latter is not,
but instead is accepted, stored, and supplied from/to user programs without interpretation.

Uninterpreted data might also be called *bulk data" or "contents;" an entity that has an attribute whose
value is uninterpreted data is similar in many ways to a file in an operating system. Note, however, that

an entity can have any number of such attributes. Also, an entity could be the representation of an I/O
device or running process which accepts input as uninterpreted data written to one (or more) of its
attributes or produces output to be read from an attribute. Current systems often use separate
mechanisms to resolve the names of files, devices, processes, and users; in effect, the four kinds of things
are in separate 'name spaces.* The RAC Consistency requirement (2.7) suggests that these and other
kinds of things should all be handled by a single underlying mechanism, that of the EMS.

I
I

4.1C System Irtegrity.

3-437I

Rationale for the RAC Draft 13 Sept 1985

The EMS facilities shall ensure the integrity of the EMS-managed data.

This requirement is in some ways a restatement of the terse requirements:

d. There shall be a means for defining certain operations and conditions as legal, for enforcing the
definitions and for accepting additional definitions of legality.

e. There shall be a means to describe data, and there shall be a means to operate upon such descriptions.

The requirement foi data integrity must include recognition of the fact that systems do fail unexpectedly,
due to hardware and software faults. The EMS must be implementable on current (c. 1985) hosts;

therefore it is unacceptable to specify fault-tolerant or multiply-redundant hardi'are. The EMS des'gn
must actively support recovery from unexpected failures.

There are several basic approaches to this problem: modern data base managers usually implement the
"transaction," a unit of work that appears, from the viewpoint of the rest of the system and of
unexpected faults, to happen "all at once." This is sometimes implemented by a journaling system, in
which the data base is recorded at a given time and subsequent transactions are recorded in a journal.
After a crash, the data base is restored from the recording and the transactions from the journal are

re-applied to it.

Modern uperating systems often build a certain amount of redundancy into their data structures and
include a "scavenger' program that can scan the structure after a crash and use the redundancy to
correct any inconsistencies in it. This is sometimes formalized as a system of "truthso and "hints," in
which the truths are handled in such a way that they cannot be made inconsistent by a crash. Hints are
used by the OS in its normal operation, for instance to speed access, but are always checked against the
truths. When a hint and truth conflict, the hint is discarded. A scavenger program can recreate the hint

system from the truths.

The CAIS has aspects of both data base and operating system, and both of the above approaches are
possibie implementations. In fact. they are quite ;imi!ar at a basi- level, differing mostly in the
terminology used. The CAIS contractor is not constrained to adopt either approach. However, data
integrity is a very important requirement, so much so that it may *set the tone" for the entire CAIS
design. 5

4.2 Typing

The fo,!Ioung definition, used in this subsection, pertains to the remainder of section 4 also.

TYPING An organization of entities, relationships, and attributes in which they are partitioned into
sets, called cniity types, relationship types, and attribute types, according to
desionated tyie definitions.

Typing is a powerful mechanism for detecting and preventing user error.

3-438

I

Rationale for the RAC Draft 13 Sept 1985

I Entities have a type; entity types might, for example, determine the types and number of each type of

attributes and relationships required of an entity of that type.

I Attributes have a type; attribute types might, for txample, determine the form, format, number, and
range of values required of attributes of that type.

I Relationships have a type; relationship types might, for example, determine the types ind number of the

entities participating in relationships of that type and the types and number of each type of attribute
required of a relationship of that type.

In the abstract, an entity type defines the set of components required of entities if they are to be of that
type. To differentiate and allow access to those components, e_rh must nave a name; the names are al su

part of the type.

For example, type *test-plan = might specify an attribute named *plan-text' of type "string(*)" (mulltiple
strings), an attribute named 'creation-date' of type "date', a relationship named "creator" of type

user" (i.e. pointing to an entity of type "user'), and a relationship named "progress" of type
'reports(*)." (An actual, usable type would probably have many more components.) All entities of type3 "test-plan" would have to have these components.

I

4.2A Types.

3 77e facilities provided by the ES shall enforce typing by providing that all operations conform to the
type definitiscns. Every entity, relationship, and attribute shall have one and only one type.

The type of a thing cannot be discussed usefully in isolation from tht functions that access the thing.
These functions EMBODY the type definition; without them, the concept of type is of interest only to

philosophers.

I Typing is necessary to:

e interpret the bit-string containing a value in order to do operations on it:

e convert between representations of the same value on different hardware. This will be
necessary if the distributed EMS supports mix-d models of CPUs and for transport of3 information from one EMS to another.

e restrict operations - establish discipline and structure. This concept is often called

5- "integrity."

At the time we wrote the RAC, there appeared to be two models: (1) every obiect has exactly one type
and types are arra..ged in a lattice or (2) objects could be of several types. We concluded that the

requirements we wanted to express could be expressed in the two models in equivalent ways, but that it
was easier to express them in the first model; thus this requirement. The CAIS designers may adopt either

model.

3-439

Rationale for the RAC Drait 13 Sept 1985

4.2B Rules about Type Derinitions.

7Te EMS type definitions shall

• specify the entity types and relationship types to which each attribute type may apply.

* specify the type or types of entities that each relationship type may connect and the

attribute types allowed for each relationship type.

* specify the set of allowable elementary values for each attribute type.

" specify the relationship types and attribute types for each entity type.

" permit relationship types that represent either functional mappings (one-to-one c- many-to-

one) or relational mappings (one-to-many or many-to-many).

" permit multiple distinct relationships among the same entities.

* impose a lattice structure on the types which includes inheritance of attributes, attribute

value ranges (possibly restricted) relationships, and allowed operations.

Note that the last bullet above is a major departure from the kind of typing found in the Ada language.

It is clear that: (1) we must have extensibility and (2) users and projects will want to particularize the

data structures to their needs. Users need to be able to define new types that are extensions of existing

types, such that operations and tools that expect entities of the old (base) type wiji also accep. and work

correctly o.a entities of the new type. The new type must therefore have the same attributes and

relationships that the base does, plus any additional ones. Attribute types may have more restricted

ranges in the new type than they did in the base, but obviously may not be less restricted or different in

any other way. The tool or operation should not need any kind of recompilation or other preparation to

operate on the new type. A type mechanism that works in this way is said to have a *lattice structure.'

It should also be possible to merge extensions such that any tools that operate on the base type and either

of the (first level) extensions will also work on the new (second level) extension type. For example, if A is

the base type and B and C are both extensions of it, it should be possible to define a D which is an

extension of both B and C. A tool that accepts A would also accept B, C, and D; a tool that accepts B

would also accept D; and a tool which accepts C would also accept D. There may be conditions under

which D cannot be formed, such as B and C having an attribute with the same name and different types.

To give a concrete example, there might be an object type named *ProgressReport that has a text

attribute in a certain format, a set of attributes, and a set of relationships. Some number of tools may
exist that manipulate these objects to produce summaries, update Pert charts, and so forth. A manager

named Krut.," may want to add a couple of attributes, for data that he's particularly interested in. He

should be able to define a new type named KrutarPR such that objects of that type can still be

3-440

U Rationale for the RAC Draft 13 Sept 1995

I processed by the existing tools and by new tools that need the new attributes. These new tools would not
necessarily be able to process objects of type ProgreseReport.

Another manager, Munck, might want his progress reports to participate in relationships to aH program
source and documentation mentioned in the text, so that he can lo,'k at it easily while reading the report.
He could define a type nned MunckPR that participates in those relationships.

Finally, because progress reports are generally kept for the life of a project and managers are not, the day
may come when manager Hart must take over for Krutar and Munck. He may build new tools that
operate on a progress report type that has both Krutar's additional attributes and Munck's additional

relationships, called HartPR. Moreover, some of his tools may have to handle old objects of type
MunckPR or KrutarPR, or even ProgressReport.I

I
4.2C Type Definition.

The EMS shall provide facilities for def'nino n,,u en"'O,,. relntinV14h;, "-,-d - - p, .

There are no explicit requirements for:

I . naming of type definitions

e storage of type definitions in a singie collection

3* restrictions on the creation of new definitions

Ai] decisions in this area are intentionally left up to the CAIS designers.

I

I4.2D Changing Type Definitions.

The E.MS shall provide facilities for ehanging type definitions. T ese facilities must be controlled such
that data integrity is maintained.

A user or project may determine that the type definition of a number of existing entities is inadequate for
his purposes and may wish to add new attributes and/or relationships to existing entities. An integrity
clause is a reminder to the CAIS designer that there may exist entities of the old type at the time of the

change. E.g., if a new attribute is added, all existing entities of the type will now have the type and
probably it must appear as though these now have the attriblite. Also, consider the DELETION of
components of a type. This is being intentionally left to the CAIS designer. The EMS must support the

user in making such a change and in updating the data accordingly.

I
~3-44 1

Rationale for the RAC Draft 13 Sept 1985

A software engineering environment must support the evolution of the kinds and organisation of
information that pertain to projects, to support the integration of new tools, and to accommodate
changing project needs. The ability to change the type definitions of the data has a number of
implications on the EMS support for data. For example, one may want to delete, add or modify an
entity attribute. Deleting an attribute in an entity type will result in the deletion of that attribute in all
instances of that type. Similarly, adding an attribute will result in increasing the storage for instances of
that type with the possibility of initialising the storage for that attribute. Modifying an attribute (i.e.
changing a range constraint) will require that all instances be checked to ensure that the values of these
instances conform to these new constraints.

The ability to define new types through derivation is not sufficient to support the need to change type
definitions in that one may want to modify existing types that are known to a set of tools without
modifying the tools that use the type.

Type changes also includes the ability to redefine the structural characteristics of the data. For example,
one may what to change a relationship from being optional to mandatory in which case the EMS must
ensure that all entities that can be related be this relationship in fact are related.

Another consideration of type modification is changing the set of entity attributes (keys) that are used for
identification. For example, one may change the key that uniquely identifies instances of an entity from
2 attributes to 3 attributes. The EMS must ensure that all instances conform to this change. This
change will potentially impact applications that use these entities.

4.2E Triggering.

The EMS shall provide a conditional triggering mechanism so that preepecified procedures or
operations (such as special validation techniques employing multiple attribute value checking) may be
invoked whenever values of indicated attributes change. Te EMS shall provide facilities for defining
such triggers and the operations or procedures which are to be invoked.

One of the objectives of a software etigii,eering environment is to provide a context for the greater
integration of the management functions with the technical functions. One of the great weaknesses in the
support systems which are in use today is that managerial and technical functions and activities are
largely treated separately, even though they have an intimate relationship with one another. The
existence of all of the project data together in an entity management system provides the opportunity to
unify the technical events with the managerial ones and thus to provide yet another avenue for improving
the quality of the systems that are produced and the ability to manage and control the development of
those systems in such a way as to keep them within budget and schedule.

A key to providing this sort of unification of managerial and technical functions and activities is to
support a link within the entity management system between events in one arena and those in the other.
One motivation behind the requirem-nt for triggerinK. then, is to provide a mechanism by which the
occurrence of a pre-defined technical event will result in some corresponding, desired action and/or
notification in the managerial realm. Of course, such mechanisms aLso have application within one of
these arenas, such as when one programmer takes an action of which another one should be aware. In

3-442

I

Rationale for the RAC Draft 13 Sept 1985

general, triggering mechanisms are a means to provide increased frequency and accuracy of Ohe sort 0f
internal project communication on which projects depend for ,uccess.

I
I
3 4.S Identfleation

77se following definitions, used in this subsection, pertain to all the rest of sectiel, 4 also.

EXACT IDE,\TITY A designation of an entity (or relationship) that is always associated with the
entity (or relationship) that it designates. This exact idertity will always designate
exactly the same entity (Or relationship), and it cannot be rhanged.

I IDENTIFICATION A means of specifying the entities, relationships and attributes to be ope-ateJ on
by a designated operation.

3In order to carry out operations on representations of entities, or representations of relationships, or on
attributes, it is necessary to specify the entity, relationship, or attributes (or sets of these) to be ope!rated
upon, and to specify the operation to be performed. The entities, relationships, and attributes to be
operated on are specified by a process known as identification.

I
I

4.1A Exact Identities.

I The EMS shall provide exact identities for all entities. The EMS shall support exact identities for all
relationships. The exact identity shall be unique within an instance of a CAIS implementation, and the
EMS shall support a mechanism for the utilization of exact identities a'ross all CAIS
implementations.

The EMS shall provide unfergeable names that cannot be separated fro. - .xact entity that they name.

It must be possible to name an entity such that use of that name will always access exactly that same
entity or will fail if the entity no longer exists. This facility, combined with the ability to prevent change
of an entity, makes possible implementation of a convenient configuration management system on top of
the EMS. Current systems sometimes use absolute disk addresses or checksums of the contents of a file to
implement an exact identity.

I The exact name of an entity is not necessarily the same as the user-specified name. For example, in a
system that implements file revisioning, the user-specified name might identify the latest revision; the
c-° " --- nwould specify a given revision, not necessarily the latest. In a system that uses relationship
structure for user nam;ig, it wv,"ld probably be desirable to be able to delete an entity and later create
another at the same 'place" in the structure, whi.'2 wouO therefore have the same user name. Use of the

I
2_ .2-

ELtionale for the RAC Draft 13 Sept 1985

deleted entity's exact name must fail in that case. An exact identity is not necessarily human-readable:
however, the user must be able to specify that the exact identity be determined and used or stored when
s/he enters the user name. For example, to specify the pieces of a new baseline, the user would enter user
names, which would be transformed into exact names and stored. On the other hand, the specification of
a pLrticular test procedure would store the user names, so that -he current revisions of the entities will be
used when the procedure is run. It may be desirable to be able to transform exact names into user names,
for example when listing a baseline.

An EMS that meets the distribution or reliability Ibackup and redundancy) requirements (Section 1.6)
may need to store multiple copies of an entity. It would then need to be able to use the same exact name
for each copy, which makes it necessary that an entity cannot be changed and retain the same exact
name. The same arguments apply to entities which may be copied or moved from one instance of the
EMS to another.

As Ada begins to fulfill its purpose of making software portable and reusable, therL will be increased
movement of software between projects, contracts, organizations, and services. For example, some 9-rVices
wiU begin to build libraries of Ada packages that are generally useful in some application area. This will
introduce the need to identify pieces of software uniquely on a service- or Dl)oD-wide basis. fo meet this
need, the service or DoD will have to administer the assignment of exact names, such that at least some of
them can be unique across all EMSs. A current example is the need to identify exactly the constituents of
a compiler that has passed validation.

4.3B Identifleation.

The EMS shal! provide identification of all entities, attributes and relationships. The EMS shall
provide identification of all entities by their exact identity. The EMS shall support identification of all
relationships by their exact identity.

The EMS shall provide for naming of individual and sets of entities, attributes, and relationships.

The user must also be able to manipulate attributes and relationships, in addition to entities. Both
attributes and relationships must therefore have user names, but do not necessarily have to have exact
names. In fact, it may be that entities have only exact names and attributes and relationships have only
user names. The user name of an entity could be the user name of a parent entity plus the name of the
child relationship that points to it.

4.2C Identifmation Methods.

The EMS shall provide identification of entities and relationships by at least the following methods:

2-44 !

R.tlonsale for the RAC Draft 13 Sept 1g85

I idznt'c .. aion of some 'start" entity(s), the specification of some relationship type and the
specification of some predicate involving attributes or attribute types associated with that
relationship type or with some entity type. This method shall identify those entities which
are telated to the identified start entity(s) by relationships of the given relationship type
and for which the predicate is true. Subject to the security constraints of section 2.R. all
rclationships and entities shall be capable of identification via this method, and all
attributes and attribute types (ezcept uninterpreted data) shall be permitted in the
predicates.

identification of an entity type or relationship type and Specification of some predicate on3the value of any attribute of the entity type or relationship type. This method shall identify
those entities or relationships of the given type for which the predicate is true. Subject to
the security constraints of section 2.8, all attributes (except uninterpreted data) shall be
permitted in the predicates.

A major function of the EMS is to provide a Name Space for the entities that it manages.

I Human users of the EMS need to be able to refer to entities and operations by using names that have
some mnemonic or connotative meaning to them. The EMS establishes a doma, or region over which
names are applied or val,:d, which m_y in !act span several physical computer systems. There may be

syntactic rules that determine the validity of a name.

Because there is only a limited number of meaningful names and users tend to duplicate each other's

choices in naming their own entities, the name space must have some internal organization or structuring
by which names are mapped to entities. That is, a user must be able to specify a local area of the
complete name space into which his names are mapped. Another user in another local area would then be3 able to use the same names for another set of entities.

The EMS shall support human-usable, exact, and flexible naming of its contents.

I e "Human-usable, naming of items in the EMS is vital to the productivity of its users.

* 'Exact' naming is vital to the successful implementation of strong control mechanisms such
as configuration control.

* "Flexibleo naming is vital to the adaptability of the EMS to a particular organization's needs.

These three criteria are apt to conflict with each other. NOTE: there is no significant difference in
meaning between the words "name" and "identity" as used here and in the R.AC.

I The problem with the use of the term 'name' and the reason why this term is avoided in the RAC is the
implication that the concept is associated with a character string. In contrast, the terms *identity" or
"identification* are used to imply that selection of something may depend not only on a character string

(for example), but also on the context in which it is used. There is an analogy here with block structured
languages; a name, for example "*, may be used in different places, and may refer unambiguously to3 different things, depending on the scope rules etc.

The names by which users refer to items in the EMS shall be easy to remember and easy to type.

3 Choice of the form of user-specified names should be biased heavily toward user convenience, at the

possible expense of additional processing needs in the EMS. "User-friendly" features such as lengths on

I
3-44 5I

Rationale for the RAC Draft 13 Sept 1985

the order of a full Line, mixed case that is retained but not significant, and embedded blanks in composite
names should be considered. The typical user will deal with a great many entities in the course of a day's
work; s/he must be able to assign names that are both meaningf6l and easy to recall.

The EMS may ptcvide particular entity types, attributes and relationships whose purpose is the support
of umr naming. For example, the common concept of a system of tree-structured directories and files

could be implemented by directory ez.tities and child relationships from them to other directories or to
iles.

The form of user-specified names is not necessarily a consideration of the CAIS; there need not be a direct
mapping between how names are specified by the user to tools and how those tools specify them to the
EMS interface. For example, a vanilla tree-structure implementation might have user-specified names in
UNIX form: a top-down list of node-names separated by slashes. The corresponding EMS interface might
specify names to be variable-length arrays of simple name strings. The tools built on this EMS would
have to parse the former format and map it into the latter.

If the CMS designers choose to specify the external form of names, they should try to avoid restrictions
based on pre-conceptions of the form of the user interface. For example, the idea of embedded blaziks in
names is horrifying to most people because of the problems involved in parsing a command string.
HOWEVER, in a menu-selection or icon-based user interface, these problems do not arise. Names are
usually pointed to, not typed; when they are typed, it is in response to a prompt for a name, to be
terminated by a CR that makes it possible to isolate the naLne despite embedded blanks. (There was an
experimental system that allowed users to store and retrieve files by placing them on imaginary shelves in
the (physical) space around them. Naming was by pointing with a finger.)

Users need to be able to name groups of things, such as *all files in directory x.* As with the form of user
names, it is not clear if this need will be fulfilled by the EMS interface or by higher-level support.

The general requirements for human useable and flexible identification have been set ou. above. In tr!YI

of the specific data model, two methods for identification of representations of entities and relationships
are specifically required here.

First, the EMS must provide navigation from one entity to another, along a relationship connecting the
two. This identifies either the other entity involved in the relationship (i.e. the entity at the other end of
the relationship), or the relationship itself. A given entity may be involved in a number of relationships,
each one of which potentially involves a different related entity. The EMS must therefore provide the
means to specify start entities, relationships, and predicates.

Second, no matter what naming scheme is selected, an alternative scheme must be provided that supports
selection of items from the EMS based on relationship names, attribute names, attribute values, or the
existence of particular relationships or attributes. The naming scheme will probably be based on the
main or most-used way that entities are retrieved; the alternative will support lesser-used retrievals.
For example, a software metric tool might need to retrieve "al. source files." This requirement is a
generalisation of the *wild card* feature or many current command processors.

3-446

Rationale for the RAC Draft 13 Sept 1985

4.4 Operations

Specific, named operations on entities, attributes, and relationships, and sets of specific operations. are an
important constituent of an EMS. A major function of the EMS is to regulate the interaction of entities

and operations, such that a defined set of rules is not viojated.

Operations may themselves be represented in the EMS by "code" or "tunnable module" entities

containing their executable code or may be "built in" to the EMS or a command 17.terpreter. It should be
easy for managers and programmers to add new tools in the form of entity operations. The CAIS
designers may choose either to provide functionality in the EMS for defining and enforcing interaction
rules for user-written operations, or may structure the system so that the operatioCs enforce their own
rules. The latter choice, while probably providing the more flexible and easier to implement approach,

must deal with the problem of "untrustworthy tools."

4.4A Entity Operations.

The EMS shall provide facilities to:

* create entitiea

e delete entities

* 'zamine entities (by examining their attributes and relationships)

I modify entities /by modifying their attributes)

* identify entities (as specified in Section 4.3)

4.4B Relationship Operations.

The EMS shall provide facilities to:

e create relationships

e delete relationships

3 examine relationships (by examining their attributes)

* modify relationships /by modifying their attributes)

I
3-447

Rationale for the RAC Draft 13 Sept 19K

* identify relationships (as specified in Section 4.3)

Many of the attributes and relationships of entities important to software projects are associated with
particular operations. Examples: the relationship between a source rile and the entity rile !hat it was
transformed into; the date on which the entity rile was created. Also, operations are generally done at the
request of a particular person, or agent, whose identity is an important datum. The agent may have

reasons for requesting the operation which are appropriate for capture. 3
1

4.C Attribute Operation@. I
The EMS shall provide facilities to: 1

" examine attributes

* modify attributes 3

I
4.4D Exact Identity Operations. 1
The EMS shall provide facilities to:

" pass exact identities between processes 3
* compare exact identities]

I

4.E Uninterpreted Data Operations. 1
The EMS shall provide that use of the input-output facilities of the Ada language (as defined i .n

Chapter 14 ,.f ANSI/MIL-STD-1815A) results in reading/writeng an uninterpreted data attribute of an

entity. The facilities of Section 6 shall then a~pl/.

I
I

3-448 I

Rationale for the RAC Draft 13 Sept 1985

I
I

S4.4F Synchronisation.

3 he EMS shall provide dVnamic acco-s synchronization mechanisms to individual entities,

relationships and attributes.

3The EMS must be able to isolate sets of entities from each other, both logically and physically.

A software project will have many agents active simultaneously; to allow them to work productively and
without mutual interference, it must be possible to isolate the collections of entities they're working with.

This need is similar to that for configuration management, above.

There is a need to be able to prevent change operations on EMS items with a *temporary flavor."

An agent who has the access rights to change some particular part of the EMS data needs to be able to

*lock out" changes by other agents with similar rights, so that s/he can perform a series of operations

without interference. This is different from the change protection discussed above in that it must be legal
for an agent who has only the right to change the data, not necessarily the right to change other agent's
access rights to the data.

A lock operation must take as its operand an "area* or *neighborhood" of the EMS structure. For

example, in % tree-structured EMS, it should be able to lock an entire subtree. If agents were forced to3lock all of the components serially, deadlock would be unavoidable.

Locks are said to be "owned" by th. agent that requests them; if the agent terminates, the locks must be

3cancelled.

I
I

4.5 Transaction.

3 T7ie following definition, used in this subsection, pertains to all the rest of section 4 also:

R A.NqAC' ION A prouping of operations, including a designated sequence of operations, which
requires that either all of the designated operations are applied or none are; e.g., a

transaction is uninterruptible from the user's point of view.

I
I
13-4 49

Ratlo.aale for the RAC Draft 13 Sept 1985

4.6A Transaction Mechanlism.

The EMS shall support a transaction mechanism. The effect of running tran-acthons concurrently
shall be as I' the concurrent transactions were run serially.

4.513 Transaction Control.

7ae EMS shall support facilities to start, end a id abort transactions. "hen a transaction is aborted,
all effects of the designated sequence of operations shall be as if the sequene were never started.

4.6C System Failure.

System failure while a transaction is in progress shall cause the effects of the designated sequence of
operations to be as if the sequenee were never started.

:Ration ale TBDI

4.6 History.

The following definitions, used in this subsection, pertain to all the rest of section 4 also:

HISTORY A recording of the manner in which entities, relationships and attribute values were
produced and of all information which was relevant in the prodution of those

entities, relationships or attribute values.

The History mechanism discussed in this secticn is not necessarily different from a particular use of the

3-450

3 Rationale for the RAC Draft :3 Sept 1985

basic entity, attribute, and relationship facilities provided by the EMS. The history of entities that areI.m, nrtact in some sense to the .velopment project may be recorded ,n special relationships, attributes,
and entities defined for that purpose. It is not inten-ed that the recording of history be either mandatory

or ai-inclusive. The management of a particular project should be able to decide which entities will have
their history recorded and whether that recording is to be mandatory.

I
U

4.BA History Mechanism.

The EMS shall support a mechanism for collecting and util-zing history. The history mechanism shall
provide sufficient information ti' support comprehensive con figu~ation control.I

I

3 4.5B History Integrity.

The EMS shall support mechanisms for ensuring the fidelity of the history.

Rationa]e TBDI

3 4.7 Robustness.and Restoration.

The following definitions, used ir this subsection, pertain to all the rest of section 4 also:

BACK-UP A redundant copy of some subset of the ZMS-managed dat,. The subset is capable of
restoration to active use by a EMS implementation, particularly in the event of a loss
of completeness or integrity in the data in use by implementation.

ARCHIVE A subset of the EMS-managed data th t has been relegated to backing storage mediw while
retaining 9hc integrity, consistency and jvailability of all information in the entity

management system.

I
I
i 4.7A RoLustness and Restoratiou.

The EMS shall support facilities which ensure the robustness of and abilty to restore EMS-managed

I
i 3-451

Rationale for the RAC Draft 13 Sept 1985

data. Te factilities tall include at least those requtred to support the backup and archiving capabilities
provided by modern operating systems.

Projects tend to have amounts of data that are large in terms of the capacity of existing storage units.
Moreover, the need for reliability makes it necessary to keep several redundant copies of all data. The
EMS must be able to divide the data that constitutes its entities among s.-v-..' :rferent storage units.
The economics of the cost of a storage unit vs. its speed make it necessary for the EMS to support several
different kinds of storage if it is to provide reasonable access at acceptable cost, and to move entities
easily from one medium to another.

Any but the smallest of software projects cannot be dependent on the continued operation of any single
piece of equipment. In fact, most DoD projects are much too large to use a single host, and must be
spread over several for capacity reasons as well as reliability. It cannot be expected that a project can be
broken into isolated, single-host-sized pieces and run on individual EMSs on separate CPUs.

The CAIS shall provide a single, coherent Entity Management System that runs in distributed fashion on
an arbitrary number of host machines. The capacity of an instance of the EMS shall be limited only by
the capacity of the hardware available to it.

ssesas.ss. orrian text, needs a home *s**s**se.

The EMS definition will probably include several elementary data types such as integer, string, and date,
to be used for attribute values that are interpreted in various ways by EMS facilities.

If there are going to be several different APSEs, it will probably be necessary to define a single 'transport
format" of the primitive types, similar to the IGES standard for CAD/CAM or the NAPLPS standard for
graphics. To move an entity from one APSE to another, it is necessary to be able to translate all data
items from their internal format on one machine to that on another. If only the underlying data types
defined by the EMS are used, only that relatively small jet needs to be translated. To provide
transportability of entities among some number of different APSEs, the CAIS must define a "Transport
Format" for al underlying data types and each APSE must be able to translate its internal formats into
and from the Transport Format. {Note: the "transport format" for tools and code packages is the Ada
language!)

For example, one possible Transport Format for floating-point numbers is the IEEE standard. As more
machines come to use it as their internal format, translation becomes less and less a burden. HOWEVER,
if some of the machines that might be used as hosts cannot handle the full range or accuracy of the IEEE
standard, either there will be restrictions on transport to those machines or the Transport Format must
have a smaller range. If the range acceptable to all potential hosts is too small to be usable, the IEEE
standard may not be usable.

The set of media to be used for transport of entities must also be considered by the CAIS, in order to
fulfiU the gene:aI I&T requirements. Most modern communications and storage systems will accept
arbitrary bit strings, but there are still many in use that accept only subsets or variants of ASCII
characters. If the CAIS is intended to support those, all Transport Formats must be specified in terms of
the union of all subsets of ASCII.

Uninterpreted data, by definition, cannot necessarily be transported with only the facilities of the EMS.
Any necessary translation will have to be provided by the user. It is conceivable that the CAIS could

3-452

Rationale for the RAC Draft 13 Sept 1985

define a few elementary types for uninterpreted data and provide automatic translation for attributes
that are flagged somehow as being of those types. For example, the underlying type of "7-bit character"
would support ASCII/EBCDIC translations when transporting between DEC and IBM machines.

(The following Is not explicit In the RACj]

I Type definition must be permitted on at least four levels:

CAIS-specified: to insure transportability of the contents of an EMS from one APSE implementation to
another, there must be a set of "primitive" types defined as part of the CAIS. A new APSE must be able
to translate values of these types from their representations on all previous APSEs to its representations.

I APSE-specified: a particular APSE (implementation of the CAIS) will have its own types for its own
purposes. These may be something as simple as the CA.IS primitives with names in French rather than
English. Another possibility is a graphics-oriented APSE that has various picture primitives, icons, and
pointer values.

Installation-specified: each particular instance of an APSE (or EMS) will be used to implement a unique
set of con-iguration control and management procedures, design and coding methodologies, testing and
QA standards, and other aspects of the local "corporate culture." The installation must be able to define
appropriate types to support this customizing.

User specified: each user, in setting up his/her own local environment, command procedures, and other
tools, will want to define new types. It is conceivable that this would be prohibited, that there would be

no mechanism for user type definition. However, because the user has full freedom to define new types in
the application code s/he's producinS, not being able to do so in command procedures would probably be
seen as a severe restriction.

I Type redefinition and overloading in Ada follow various scoping rules that do not necessarily apply to
EMS types. For example, should a user be able to redefine a type defined by the installation? Are all
instalation and user type definitions kept in a single collection, thu% insuring Lhat there cannot be two

different types having the same name? This would be a tremendous problem of implementation and
administration. Axe these concerns RAC or CA.S decisions!

3 A general philosophy of the APSE is that installations will be able to build an environment that suits
their needs on the APSE. For example, a smaBl software house in Southern California might feel it
necessary to keep the astrological sign under which an entity is created.

I
I
I
I

i 3-4 53

-I -.- l nnmnmn nnm• ml n N~IlIsll mma

Rationale for the RAC Draft 13 Sept 1985

5. PROGRAM EXECUTION FACILITIES

Access controls and security rights will apply to all CAIS facilities required by this section.

The following definitions pertain specifically to this section:

PROCESS the CAIS facility used to represent the execution of any program.

PROGRAM a set of compilation units, one of which is a subprogram called the "main program."

Execution of the program consists of execution of the main program, which may
invoke subprograms declared in the compilation units of the program.

RESOURCE any capacity which must be scheduled, assigned, or controlled by the operating system
to assu e consistent and non-conflicting usage by programs under execution.

Examples of resources include: CPU time, memory space (actuals and virtual), and
shared facilities (variables, devices, spoolers, etc.).

ACTIVATE to crecte a CAS process. The activation of a program binds that program to its
execution environment, which are the resources required to support the process's
execution, and includes the program to be executed. The activation of a process

marks the earliest point in time which that process can be referenced as an entity

within the CAIS environment.

TERMINATE to #top the execution of a prQcess such that it cannot be resumed.

DEACTIVATE to remove a terminated process so that it may no longer be referenced within the

CAIS environment.

SUSPEND to stop the execution of a process such that it can resumed. In the context of an Ada
program being executed, this implies the suspension of al! tasks, and th! prevention

of the activation of any task until the process is resumed. It specifically does not
imply the release of any resources which a process ha assigned to it, or which it has
acquired, to support its execution.

RESUME to resume the execution of a suspended process.

TASK WAIT delay of the execution of a task within a process until a CAIS service requested by
this task has been performed. Other tasks in the same process are not delayed.

An Ada Programming Support Environment (APSE) provides the soft'ware engineering capabilities for
developing Ada software. These capabilities are available to the user through a comprehensive set of
transportable software development tools. The ability to extend the tool set by adding new tools,
combining existing tools, and reusing tool components promises to lead to the cost effective automation of
the life-cycle support for Ada software.

A fundamental requirement of the Common APSE Interface Set (CAlS) is to provide program execution
facilities through which software development tools can be executed. These facilities support the
composition, execution, and testing of tools that reuse executable programs in order to economically
increase tool functionality. Furthermore, there is a desire to increase the longevity of APSEs through the

3-454

Rationale for the RAC Draft 13 Sept 1985

construction of tools that exploit execution environments that are hosted on distributed and
he.,rg6,neoUs systems.

The notion of building tools from smaller components is consistent with contemporary software
engineering practice that advocates precise functional decomposition of complex programs into separate
simpler programs. In addition, when the programs are independently compiled and linked, the separate
program name space affords the opportunity for distributing the execution of the programs that comprise
the tool. For example, the distribution of an APSE in an environment consisting of an interconnection of
mainframes and workstations may be used to separate tool functionality to provide a more responsive
user interface. In this instance, the composition of a tool would require interfaces that support the
cooperation among code that executes on different computers. This composition may not be readily
achieved without such interfaces.

The use of the Ada task model for tool composition may unnecessarily constrain the type of tool
distribution useful to tool builders from both a practical and implementation perspective. The
orientation of the model to support mission-critical applications in static execution environments can be
too rigid for the program cooperation anticipated for the dynamic execution environment in which tools
are hosted. Moreover, it is unlikely that the implementations of the Ada Run-Time System will support
distributed execution of a program unless specifically mandated for a mission-critical target.

At a minimum, program execution facilities must enable one Ada program to call (invoke) the execution
of another Ada program. This requirement is stipulated in the Stoneman document and is a requirement
of the two Government sponsored Minimal APSEs, the ALS and ACS. The ability to concurrently
execute another program provides greater utility to the tool builder than many existing interfaces that are
used to accomplish tool composition through the concatenation of program executions.

UThe overall objective is to provide a minimal set of services that support synchronous and asynchronous
modes of program execution. Furthermore, attaining this objective should not compromise the effective
use of all processing resources in order to achieve parallel/distributed execution, or efficient serialized
interleaved execution.

Finally, the ability to exploit tool synergism in order to compose complex tools from simpler tools has
motivated that specific requirements for creating processes, controlling processes, and communicating
among processes be specified in order to promote a comprehensive process execution model within an
APSE. These requirements are the basis for services that can be provided within the CAIS to promote
the straightforward construction of tools and toolsets beyond that provided by conventional command
procedures. The requirements are specified to allow for maximum innovation in the CA.S design and to
minimise the prejudicial influence of existing tool interface designs and implementations.U

I
I

5.1 Activation of Program In the context of the CAS, and of program support
environments generally, a program is a relatively static entity that may exist in various phases, from
source to executable image, in the normal progression from inception to execution. it is implicit that
program execution denotes any of the states that comprise a program's execution chronology, e.g., ready,
blocked, waiting, etc. Therefore, the term process is used to denote an abstraction that represents the3sequence of states that comprise the execution of a program.

3-455

Rationale for the RAC Draft 13 Sept 1985

Activation of a program may be viewed as an instantiation of an executable image of a program together
with the establi.hment of the control information and resources that are necessary for its execution.
Specific properties of a process are not elaborated, e.g., loci of control and address space, since this level
of detail is superfluous to understanding the requirement. It is recognised, however, that for a distributed
execution environment, an important capability is to normalise differences within the execution
environment for the APSE and between the APSE and any target environment to which it is connected.
Consequently, for most tools, the actual processing jocation oi program execution is expected to be
transparent in the denotation for a CAIS process and is conseauently not explicitly required by the
program execution facilities. This transparency enhances further APSE tool transportability over a
variety of different computer architectures.

6.1A Activation. The CAIS shall provide a facility for a process to -reate a process for a program
that has been made ready for execution. This event is called activation.

Activation refers to the creation of a process from an Ada main program that is in a format for
execution. Following creation the process is ready for execution. The assumption is made that an
executable image for the program has been prepared using the language processor tools either prior to or
as a part of activation.

The principal rationale for program activation is derived from the requirem-nt to provide a fundamental
capability for one process to invoke the execution of another program, i.e., to create a process in a well-
defined way that enhances the construction and transportability of APSE tool sets. This is consistent
with the Stoneman statement that *the KAPSE shall provide a mechanism whereby it shall be possible
for one APSE tool to invoke another APSE tool and supply the invoked tool with parameters'. Thus,
the potential transportability of the Command Language Processor tool among CAIS conforming APSEs
is increased, allowing, for example, a compiler tool set to be constructed through a command procedure
that invokes the various phases (programs) that comprise the compiler. Furthermore, it implies the
existence of a relationship among concurrent processes and that, following activation, a process includes
the notion of all resources explicitly and implicitly required to support the execution of the specified
program including ancillary procedures or resources, such as those necessary to support program
debugging and monitoring.

The requirements present the view of an Ada program as a single executable entity rather than a main
program enclosing a collection of deoendent tasks. Thus, when programs share processing resources,
scheduling of the resource may be performed at the process level. The requirements, however, do not
explicitly exclude a unified process/task execution model in those instances where it may be beneficial to
coordinate the CAIS design with the Ada Run-Time System.

It is important to separate the requirement for program activation from requirements that may exist to
support the fragmentation or distribution for a program's execution. The latter requirements are
typically satisfied by the overlay and run-time functionality necessary to manage a program's use of the
addressing and processing capacity of the execution environment. This should be transparent when
writing source code for a transportable tool and is more properly considered to be a requirement for the
language processor tools, viz., compiler and linker. Consequently, this is intentionally absent from the
scope of the requirements for the CAIS.

3-456

Rationale for the RAC Draft 13 Sept 1985

I
I

6 .1B Unambiguous Identifleation. The CAIS shall provide facilities for the unambiguous
identification of a process at any time between its activation and deactivation; one such capability
shall be as an indivisible part of activation. This act of identification establishes a reference to that
process. Once such a reference is established, that reference will refer to the same process until the
reference is dissolved. A reference is always dissolved upon termination of the process that establishedI the reference. A terminated process may not be deactivated while there are references to that process.

After process creation, subsequent communication and synchronisation with the process depends upon the
ability to reference it. The CAIS must, therefore, provide an unambiguous name through which each
process can be referenced as the target of some process-related interface. This name refers to the same
process until the name is rendered obsolete when the process becomes unreferenceable. Unambiguous,
rather than unique, is used to avoid the connotation that the name of a process must be unique over space
and time, i.e., it cannot be reused.

Three significant events are identified in the process life-cycle: activation, termination, and deactivation.
Activation has been previously defined as the event that creates a process. Termination is defined as the
event that precludes a process from becoming a candidate for further processing resources; the process
ceases execution but remains a referenceable entity through the CAIS. Deactivation is defined as the
.event that erases all information about a process that is maintained by the CAIS, including the pro-cess
name and termination related data. Consequently, the name of the process may be reused following
deactivation providing that it does not compromise the integrity of the CAIS implementation.

The model assumed for referencing one process by another process is analogous to that used for
referencing f'lies in a contemporary file system. It is recommended that a compliant CAIS design provide
a unified reference model for all CAIS objects. Implicit in this recommendation is the expectation that
thle process name provides efficient and secure reference to a process, and that it eliminates the need to
revalidate access rights and privileges each time the process is referenced. Consequently, a process may
not be deactivated until no further references are possible. This establishes the space/time boundary for
process accessibility through the CAIS.

While there are no specific requirements on the way in which process identification is to be established, a
scheme for process identification must be specified and its resultant impact on other CA.S facilities
defined. One provision of a compliant scheme is that program activation and process identification are
indivisible when program activation is completed successfully.

U A CAIS design that guarantees uniqueness of names after deactivation, while not required, is compliant
with the requirement.

3
I
I

3-457I

Rationale for the RAC Draft 13 Sept 1985

6.1C Activation Data. The CArS shall provide a facility to make data available to a Xrogram upon

its activation.

The facility to make data efailable following activation of a program is similar to the presence of in-
mode parameters that are included in the specification of an Ad& main program. The requirement is
intended to provide a straightforward capability for the activator of a program to optionally pass data to
the process that results from the activation.

While it is expected that the rules for parameter conformance and passing will remain consistent with the

rules in the Ada Reference Manual, restrictio~s on activation data are not prohibited in order to support

a dynamic environment that is efficient and implementable. For example, a CAIS design may
legitimately restrict activation data to a single subtype. It is likely that such restrictions would be

compatible with any Appendix F parameter requirements for a compiler implementation; however, no

additional functionality should be assumed from the Ada Run-Time System to support activation data.

The rationale for the retiuirement is to ensure that a practical facility for parameterized "-tivation of a
program exists that is analogous to the call of an Ada procedure.

.lD Dependent Activation. The CAIS shall provide a facility for the activation of programs
that depend upon the activating proceas for their existence.

A typical requirement of many tools is for a process to have a well-defined relationship with the process
that invoked its activation, i.e., the creating or parent process. There are two distinct motivations for

requiring this relationship. First, there should be some notion of accountability within the CA.S. Since

processes consume processing resources, there should not be uncontrolled access'to them. Therefore, a

capability is needed to authenticate the rights through which a process derives its processing resources. A
dependency relation on the parent process provides a measure of accountability for such authentication,
i.e., inherited rights. A second motivation is to simplify the termination of related processes. When a

process is terminated explicitly by another process, it should optionally result in all processes created by
the terminated process to become terminated. Thus, the process that requested the termination is not

required to individually terminate all processes created by the process to be terminated. As a result of
this, the requirement stipulates that a facility must be provided whereby the existence of a process

depends upon the existence of its parent.

A straightforward dependency relationship for these requirements is one that implies a hierarchical
process structure that originates from the process creating the processes executed by the tool or tool set.

This permits the resources to be inherited and reclaimed in a well-established and accepted fashion.
While a strict hierarchical relationship among processes is not mandated by the requirement, it should be

possible for a parent process to optionally request, when activating a program, dependent process

termination when it terminates. Consequently, a process should be provided a facility to create a

dependent subordinate process, viz., a subprocess.

Originally, there was an explicit requirement for adherence to a strict dependency hierarchy for all process
execution. This requirement is relaxed, since it is recognised that there is the practical need for a

capability to create an independent process.

3-458

I Rationale for the RAC Draft 13 Sept 1985

I
I
I

6.1E Independent Activation. The CA! S shall provide a facility for the activation of programs
I that do not depend upon the activating process for their ezistence.

Certain categories of APSE tools are expected to execute independently of the tool that requested
program activation. Consequently, there is a specific requirement for a process to continue execution
after its parent has terminated. For example, tools that execute in a background execution environment
are usually independent of the invoking process, viz., spooler-type tools.

I Independent activation does not preclude the need for accountability of a process. However, the means
through which this accounting is achieved is not required to be specified by the CAIS since there is no
apparent benefit that accrues to tool transportability.

I
I

5.2 Termination The rationale for the termination requirements is based upon the need to
provide complementary capabilities to those specified for program activation, i.e., the CAIS must permit
the removal of processes from the execution environment.

I
I

5.2A Termination. The CAIS shall provide a facility for a process to terminate a process. There
shall be two forms of termination; the voluntary termination of a process (termed completionj and the
abnormal termination of a process. Completion of a process is always self-determined, whereas

abnormal termination may be initiated by other processes.

A process may terminate any process that it can reference subject to any access restrictions on this
process. In particular, a process may terminate itself, i.e., self-determined termination.

An important aspect of self-determined termination is that it is both orderly and voluntary and is
therefore called process completion. Conversely, termination of a process by another process is not
synchronised with the process to be terminated and is not necessarily orderly; this is called abnormal
termination.

I 3-459

Rationale for the RAC Draft 13 Sept 1985

An abnormal termination capability is required when aberrant process execution is detected or in the
event that unhandled exceptions are visible outside the process in which they were raised. A useful
distinction is recognised between completion and abnormal termination regarding the availability of
information to other processes, vis., the parent process. When a process completes it is expected that the
precise reason for termination will be provi.ded by the terminated process. However, when a process is
abnormally terminated this information may not be available. This distinction is used to guide the
requirement stipulated in 5.2C for termination data.

5.2B Termination of Dependent Processes. The CAIS shall support clear, consistent rules
defining the termination behavior of processes dependent on a terminating process.

The rationale for requiring clear and consistent rules that define the termination behaviour of processes
that are dependent on the terminating process is based upon the need to safeguard against nonproductive
process execution. In particular, when a parent process terminates abnormally, any dependent processes
that are servicing the parent should be prevented from redundant execution.

The original requirement had specifically stipulated that when a parent process was terminated, either
normally or abnormaly, its dependent processes should be automatically terminated. This requirement is
relaxed since it was argued that while a CAIS design might choose to enforce termination closure, it is not
essential for tool transportability. However, what is essential for tool transportability are rules that
govern the termination behaviour of dependent processes.

While it is not precluded by the requirement, a r,!!e ;;iniir to that for normal Ada task termination,
where a master task may not term.hate until all dependent tasks have terminated, is unnecessary for
normal pr-:.es5 termination given the fundamental differences between a process and a task.

5.2C Termination Data. The CAIS shall provide a facility for termination data to be made
available. This data shall provide at least an indication of success or failure for processes that
complete. For processes that terminate abnormally the termination data shall indicate abnormal
termination.

The rationale for the termination data requirement is motivated by the need to maintain logically
consistent process execution among cooperating processes. For example, when a process is created to
perform a service for another process, not necessarily the parent process, data indic-ating the success or
failure of the service should be made available to accommodate asynchronous normal or abnormal
termination. Furthermore, this data should remain accessible until the terminated process is deactivated.

3-460

I Rationale for the RAC Draft 13 Sept 1985

The precise information that comprises termination data is not specified, other than it must, at a
minimum, permit the recording of successful or failed execution. It is expected that a CAIS design will
provide for additional information.

When a process terminates abnormally it cannot guarantee the accuracy of the termination data. Under

these circumstances, the CAIS is required to ensure that the termination data includes an indication of

abnormal termination.

U
I

I.3 Communication The construction of tools that exploit the capability to distribute
functionality as separate processes requires that a means for dynamic communication among processes be
available. Supporting only communication that occurs as a result of process activation or termination is
insufficient to provide the necessary synergism to implement cooperating processes within a tool.

Consequently, there is a requirement for the exchange data among processes.

I

6.3A Data Exchange. The CAIS shall provide a facility for the exchange of data among processes.

Specific facilit;es must be provided for exchanging data among processes. The generality of the

requirement is deliberate in order to avoid suggesting a particular design and to encourage an effective

approach for interprocess communication.

For example, the following model is one potential approach that satisfies the requirement. In this

approach, the exchange of data is specified using an abstract type resource that provides a means for
passing data among processes having access to the resource. The resource is accessible through a
symmetric interface that facilitates both the synchronous and asynchronous exchange of data. The
identification and attributes of the resource is consistent with other CAIS objects and is independent of

message synchronimity and the multiplicity of data exchanges.

The semantics of the interprocess communication facilities are expected to be functionally compatible with
those specified for contemporary message passing models. While it is not required that the Ada language

rendesvous semantics be specified for exchanging data, it is expected that the facilities are sufficiently
comprehensive that the tool builder may construct a rendezvous style interprocess communication

capability. The principal reasons for not requiring that interprocess communication be functionally
equivalent to the task rendezvous style of communication are: a desire for consistency and orthogonality
in the facilities that are available to the tool builder, and the fundamentally different execution contexts

of a process and a task.

Requiring that interprocess communication provide identical features to the Ada rendezvous model

3-461

Ristionale for the RAC Draft 12 Sept 1985

imposes the restriction that interprocess communication follow rules that may be unwarranted for
communication among processes which are outside the semantics of the language. For example, the
selective terminate requires that process termination adhere to the rules for Ada dependent tasks. This
clearly compromises process termination orthogonality, for the sake of consistency of inter and
intraprocess communication, since process termination should be independent of communication
requirements. Conversely, relaxing the requirement for equivalent functionality compromises consistency
by specifying similar communication facilities that are governed by different rules, thereby presenting a
threat of confusing the tool builder. In addition, programs, rather than tasks, are likely to be choices for
software distribution among separate computers. Consequently, the CAIS design should not be expected
to overcome the complexities resulting from distributed rendezvous. For example, determining if a
terminate alternative can be selected wou!d require a substantial amount of computer coordination.

[TBS - Examples are required for this section to demonstrate how process communication may be
effectively used by the tool builder. The proposed model is presented as basis for this demonstration of
utility. The construction of an Al-like tool for this demonstration has been recommended.

.4 Synchronisation A facility to synchronize process execution is required.
Synchronisation is specified separately from the requirement for interprocess communication to emphasize
the functional difference between communication and synchronization.

A conforming CAIS design may include process synchronization as a result of interprocess communication;
however, specific facilities are expected to be available for process synchronization. While it is mandatory
that task execution semantics are not compromised by the process execution model, it is recognised that
the strict separation of process and task management may incur unacceptable process execution behavior.
Therefore, a coordinated execution model for process and task synchronization may be appropriate but it
should not require extensive increased support from the Ada Run-Time System.

6.4A Task Waiting. The CAIS shall support task waiting.

This requirement specifically stipulates that if a CAIS operation cannot be completed directly (as defined
by the CAIS design), any resulting delay should be limited to the task enclosing the call to the CAIS
operation.

A less precise requirement that stipulated that the process not be delayed was avoided since it would
require that all CAIS calls complete directly. It is recognized that this requirement challenges the CAIS
designer to achieve a delicate balance in satisfying the requirement while safeguarding the semantics of
task execution. A corollary of this requirement is that all CAS facilities should state explicitly when

3-462

I Rationale for the RAC Draft 13 Sept 1985

execution blocking results from a call to a CAIS facility. Failure to specify this information may
adversely effect tool transportability.I

I

I 5.4B Parallel Execution. The CAIS shall provide for the parallel execution of processes.

This requirement specifically stipulates that processes within the CAIS may execute in parallel except
when serialized execution is required by the semantics of the CAIS facility. A CAIS design that forces
serialized process execution is unacceptable unless serialization is necessitated by insufficient processing

resources that require two or more processes to share a single instruction stream processor, Ln this event,
the CAIS must provide interleaved (logically parallel) process execution that fairly allocates processing
resources among processes.

I
I

5.4C Synchronisation. The CAIS *hall provide a facility for the synchronization of cooperating
prceCsses.

3 A specific facility must be provided for synchronizing the execution of processes. The generality of the
requirement is deliberate in order to avoid suggesting a particular design and to encourage an Linovative
approach to process synchronization.

Typically, the facility should piovide for establishing synchronised execution points among cooperating
processes. For example, a process may wish to coordinate its continued execution with some event; this
event may occur as a result of some explicit action, provided through the CAIS, by rnother process.

U
I

5.4D Suspension. The CAIS shall provide a facility for suspending a process.

A speific facility must be provided for one process to stop the execution of another process such that
execution of the stopped process may be continued. Activities currently being performed by the CAIS or
the host OS on behalf of the process may be continued until intervention of the suspended process is
required. Resources that may have been temporarily assigned, viz., processor(s) and physical memory
may be released as a consequence of suspended execution.

I
I 3-463

Rationale for the RAC Draft 13 Sept 1985

In the context of an executing Ad& program, this requires the suspension of all tasks that are executing; a

facility not directly available in the Ada language. When the process is executing in a distributed

environment tasks may be suspended individually. However, suspension of & process must not change the

behavior of task execution within the process unless the change is a direct consequence of the task not

being in an executable state, e.g, failure to honor an interrupt. Therefore, suspension of a process may

result in failure of tasks that depend upon real-time interactions and delays.

6.4E Resumption. The CAIS shall provide a facility to resume a process that has been suspended.

A specific facility must be provided for a process to request that a suspended process resume the use of

processing resources. As a result, all tasks suspended in a process are made available for execution

simultaneously. It is acceptable to restrict resumption of a process to the process that suspended it.

The resumption of a process should not result in rescheduling of task execution within a process; i.e., the

same set of tasks should continue execution following resumption of the process unless rescheduling is

necessitated by the occurrence of a time-dependent event, e.g., completion of an external task blocking

operation. Consequently, the semantics of the Ada task model are safeguarded by ensuring that

rescheduling only occurs for events that would occur if the process had not been suspend'd and then

resumed.

6.6 Monitoring [TBS - Introductory text.!

6.6A Identify Reference. The CAIS shall provide a facility for a process to determine an

snambiguous identity of a process and to reference that process using that identity.

A specific facility must be provided for referencing a process. This requirement augments the requirement
for the unambiguous identification of a process when it is created by requiring support for referencing the

identification of a process. Therefore, once a process has been created, its identification may be used to

support other program execution facilities, i.e., to designate the target process for an operation. A facility

for a process to determine its own identity should be provided.

3-464

3 Rationale for the RAC Draft 13 Sept 1985

I
I

5.6B RTS Independence. CGAS program execution facilities shall be designed to require no
additional functionality in the Ada Run-Time System (RTS) from that provided by Ada semantics.

Consequently, the implementation of the Ada FITS shall be independent of the CAIS.

This requirement constrains the design of the CAIS to be impiementable witho"t support from the Ada
Run-Time System (RTS). However, it is expected that the requirement may be overly optimistic when
CAIS functionality cannot be implemented efficiently unless there is support available from the RTS, e.g.,
to support the In3trumentation interfaces of 5.5C.

The motivation for this requirement originates from a need to c!early aelineate RTS interf-ces for Ada
program transportability from CAIS interfaces for tool transportability. Earl- requirements did not
distinguish between the two levels of transportability and were a source of some confusion. When the
distinction was clearly established, a recommendation was rejected that proposed the inclusion of program
transportability interfaces to the RTS as CAIS requirements and design criteria. The reasons cited for
excluding RTS interfaces included the concern that rehostability of CAIS interfaces might be

compromised by RTS interfaces that were not readily retargetable, and that compiler developers would be
unreceptive to RTS requirements that were not explicit in the Ada Reference Manual. Therefore, this
requirement reduces dependencies upon potentially nonretargetable interfaces and unreasona*PAIconstraints upon compiler implementations.

It is recognised that there is an apparent conflict in the requirements when considering other interface
requirements that seem to rely on additional RTS functionality, e.g., task blocking when required by a

distribuitionailt Remai tnsaetatshk Gl mpeetain
CA.IS operation. This conflict can be expected to grow if a single program's execution is distributed on
separate computers and the distribution is to remain transparent to the CA.IS implementation.

Consequently, future revisions to the requirements may ameliorate the conflict.

I
I

6.5C Instrumentation. The CAMS shall provide a facility for a process to inspect and modify the3execution environment of another process. This facility is intended to promote suprort for portable
debuggers and other instrumentation tools.

Specific facilities must be provided to support transportable tools for debugging and perfcrmance
monitoring. In particular, a process must be able to inspect and modify the execution environment of a
target process. It is desirable that this facility should not ne-essitate the addition of special code in the
target process nor any additional compilation or linking directives.

It is important to recognise that the instrumentation requirements are specified to accommodate an

3
i 3-465

RAtionale for the RAC Draft 13 Sept 1985

execution environment in which the target process is executing on a separate, and potentially different,
computer from the process using the instrumentation interface. Consistent with the other CAIS interface
requirements, the distribution of the execution environment is transparent to the tool builder.

3-466

Rationale for the RAC Draft 13 Sept 1985

* 6. INPUT/OUTPUT
I
I

I Access controls and security rights will apply to all CAJS facilities required by this section.

The requirem:nts specified in this section pertain to input/output between/among objects (e.g.

processes, data entities, communication devices, and storage devices) unless otherwise stated. All
facilities specified in the following requirements are to be available to non-privileged processes, unless

otherwise specified.

The following definitions pertain specifically to this section:

BLOCK TERMINALi a terminal that transmits/receives a block of data units at a time.

CONSUMER an entity that is receiving data units via a datapath.

DATA BLOCK a sequence of one or more data units which is treated as an indivisible group by a3transmission mechanism.

DATA UNIT a reprsentation of a value of an Ada discrete type.

I DATAPATH the mechanism by which data units are transmitted from a producer to a consumer.

DATASTREAM the data units flowing from a producer to a consumer (without regard to the

implementing mechanism).

HARDCOPY TERMINAL

a terminal which transmits/receives one data unit at at time and does not have an
addressable cursor.

3 PAGE TERMINAL

a terminal which transmits/receives one data unit at at time and has an addressable
cursor.

PRODUCER an entity that is transmitting data units via a datapath.

TERMINAL an interactive input/output device.

TYPE-AHEAD the ability of a producer to transmit data units before the consumer requests the data
3 units

The level of these requirements is determined by a number of factors. There are too many terminal

3
~3-467

Rationale for the RAC Draft 13 Sept 1985

types, and probably always will be, to list them all. It is undesirable to have a capabilities file accessed
directly by a tool, since the tool would then need to change for each new terminal. It is likewise
undesirable to have a high-level interface including prompting protocols, since this can be implemented on
top of the CAIS, and can have a methodological impact. Portable tools cannot use all of the capabilities
of powerful terminals, since they could then not port to other terminals. When the hardware is part of
the tool, the unfiltered interfaces can be used to write a higher interface. Emerging technologies, such as
color, bit-mapped graphics, and color can be handled in this way until standard interfaces evolve.

The word privilege is used in an informal sense to denote the absence of generally applied restrictions, and
is not intended to require two classes of processes. It is almost universal that some processes operate with
more capabilities than others. A non-priveleged process is therefore one which does not have exceptional
privileges. The privileged process in 6.3C is any process having the privilege to interrupt in this manner.

The devices listed in these requirements must be supported by the CAIS interfaces, but no
implementation of the CAIS should be required to provide all of these devices. When such devices are
added to a CAIS installation, the interfaces should be made available.

An alternative to the present approach is to provide generic device drivers, in the manner of UNIX and
ioctl. This was felt to be inappropriate, since such devices are at too low a level to provide the clarity of
the interfaces below. The CAIS may, however, specify such general interfaces and layer the specifics on
top. If this is done, the layering must produce complete and portable interfaces as required, so that the
same control mechanisms can be universally used.

The choice of a hardcopy terminal as the least common denominator is not intended to imply that such
terminals are in standard use in software development. It merely provides an interface so that new or
foreign terminals can talk to an APSE at some level of capability.

The cursor addressing requirement for the second class of terminals is necessary for the programs which
use most terminal time in development: debuggers, editors, system status monitors, and databases. These
programs are the core of the user interface.

The block terminals are little known in many circles, but are widely used, particularly where large
numbers of users access a single computer.

The other devices are the external media for which standard interfaces can be based on current usage, and
for which current Department of Defense need is established.

0.1 Virtual I/O Devices: Data Unit Transmission

3-468

i Rationale for the RAC Drift 13 Sept 1985

m 6.1A Hardeopy Terminals. The CAIS shall provide interfaces for the control of hardcopy
terninals.

m Some terminals which are not truly hardcopy may be incapable of transmitting at the character level,
deferring all transmission to lines or other units. Where these do not fit into the larger class of block
terminal requirtments, they can be trea~ed as hardcopy terminals. Almost any terminal can be treated as
a hardcopy terminal.

A cardreader and punch can be handled as a hardcopy terminal. PROM burners can be handled by this
interface, although a higher level interface to a virtual PROM burner can be written on top of this.

I
I

8.1B Page Terminals. The CAIS shall provide interfaces for th,, control of page terminals.

This requirement is aimed at keystroke transmission and an addressable cursor. The term 'pageg terminal* is not intended to imply page trana'.sion, and is not intended to preclude scrolling.

The alternative to this is to ign3,e the keystrokes and deal with lines and blocks. This class of terminals
is needed because of 6.4C, where further discussion can be found.

I
I

6.1C Printers. The CAIS shall provide interfaces for the control of character-imaging printers and
bit-map printers.

This is meant to include all classes of printers.

I
I
1 B.D Paper Tape Drives. The CAIS shall provide interfaces for the control of paper tape drives.

If this were absent, a low-technology medium which continues to be in wide use would not be supported.
and an APSE might be incapable of supporting current ways of doing business. Paper tape is generally
used for host/target communication.

I
3 3-4 69

Rationale for the RAC Draft 13 Sept 1985

The support of punched cards is in a similar category, but it is possible to use the hardcopy terminal
interface to a cardreader/punch. Cards are generally punched with normal characters, while paper tape is
more generally used for binary data and human-readable hole patterns, which cannot be accessed in this
way.

.1E GraphicA Support. The CA[S shall support the control of interactive graphical inputoutput

devicea.

There is no existing standard that has universal acceptance as the definition of graphic capabilities.
Consequently, the requirement for a specific interface is in issue requiring the sort of investigation and
consideration expected of the CAIS designer. The imminent ISO.A.NSI Graphics Standards for GKS and
CG-VDI should be considered as candidates.

This requirement is not specific to terminals, but refers instead to all devices. The terminal interfaces
described below are not intended to support graphics directly. The choice between interactive and batch
graphics is not specificaly specified, but interaction is the current standard access. The decision as to
whether bit=mapped or line grphics are to be supported is let to the CAIS designer. *Graphical input

device refers to pointing/locating devices; raster imaging is not required.

G.AF Telecommunications Support. The CAIS shall support a telecommunications interface for

data transmission.

Telecommunications support should be based on existing standards, but it is part of the CAIS design to
decide which standards are appropriate. Since this is an external interface, the semantic specification of
the telecommunications interface must completely describe the external interface.

8.2 Virtual I/O Devices Data Block Transmission

3-47C

m Rationale for the RAC Draft 13 Sept 1985

3 6.2A Block Terminals. The CAIS shall provide interfaces for the control of character-imaging
block terminals.

Block terminals behave as local editing stations for small blocks of data. The size of the block is a
characteristic of the protocol, and is not necessarily constant.

The alternative to this requirement is to class such terminals as hardcopy devices. Ignoring the special
features of these terminals would make these features inaccessable to portable APSE tools. Some of the
features are essential to effective data entry systems.

l This is an incomplete requirement deferred to the CAIS designer. Existing terminal capabilities should be
considered in designing the interfaces, so that they can control the important features of the significant3 terminals in this class.

I
m

6.2B Tape Drives. The CAIS shall provide interfaces for the control of magnetic tape drives.

m Magnetic tapes are expected to be the principal means of transporting data between APSES, and as such
are external to an APSE. Many applications generate tapes which are not to be used by the APSE, but
are specific magnetic patterns to be read by other systems (targets). It is thus necessary to view the tape
drive as an I/O device. Tape communications between APSEs may be limited to the common external
form.

3 There is an ANSI standard for tape formats, but there are also testimonies of problems in using ANSI
tapes to communicate. This interface is external, so the semantics must include the exact format of the

m tape.

Hard disks, on the other hand, can be considered to be an implementation mechanism for the features
required by Section 4. They need not be considered I/O devices, since they neither enter no, :eave an

m APSE.

Floppy diskettes are moe likely to be used as a transmission device, and deserve their own requirement.3 However, no accepted standard exists, and any interface would be arbitrary.

m
I
I
m

[3-47 1

Rationale for the RAC Draft 13 Sept 1985

6.3 Datapath Control The requirements and criteria in this section pertain to both data unit
transmis ion and block transmission.

S.A Interface Level. The datapath control facilities of the CAIS shall be provided at a level
comparable to that of Ada Reference Manual ' File I/0. That is, control of datapaths shall be provided
via subprogram calls rather than via the dntn units transmitted to the device.

Many devices permit escape sequences in their datastream to control their behavior.

It is possible to specify these escape sequences and their consequences, selecting CONTROL _ L to create a
new page, ESCAPE-,-w to change the color of a terminal, etc.

Since devices vary, it is unwise to take this approach. It would become necessary for the CAIS
implementation to filter eve.7y transmission character and find the escape sequences, replacing them with
the ones required by the device. By having the functions called as functions, it is possible to let the text
go through unfiltered and still keep control of the device.

This does not prevent an implementation from filtering some characters, as described in 6.4E. Nor does
it prohibit the transmission of escape sequences whic :ontrol device. It only provides access to these
behaviors in device-independent ways.

6.3B TImeout. 7Te CAIS shall provide facilities to permit timeout on input and output operations.

Many input/output operations involve waiting for some completion or acknowlegement. When this is not
forthcoming, a program can wait forever.

This requirement can be bypassed by writing a task which waits some time interval and checks for the
completion of the basic action. This mechanism may be inefficient, and can usually be replaced with an
efficient one if the driver is aware of the desire to time out.

This requirement affects all input/output interfaces, in that they must provide some mechanism for the
control of timeout situations. If 5.4A cannot be met by an implementation of the CAIS, the interfaces for
timeout are necessary to achieve some desirable effects.

3-472

Rationale for the RAC Draft 13 Sept 1985

6.C Exclusive Access. The CAIS shall provide facilities to obtain exclusive access to a
producer/consumer; such exclusive access does not prevent a privileged process from transmitting to
the consumer.

I A program should be able to own a device, to prevent interleaving by other processes. System shutdown
messages should not be prevented from reaching such a device, as they do not represent normal
interference. An example of this is the ownership of the printer by the print spooler/symbiont/daemon to
prevent interleaved output under normal circumstances. This is also of use in implementing a windowing
terminal interface.

3 The concept of a privileged process is discussed at the beginning of the rationale for section 6.

I
I

8-.D Datastrearn Redirection. The CAIS shall provide facilities to associate at execution time the
producer/consumer of each input/output datastream with a specific device, data entity, or process.

This requires the CAIS to provide a means to allocate to a Virtual Device (essentially to a device type) a
specific hardware device to implement an instance of the required functionality without requiring a
program vo include actual device and datapath values.

U
I

3 B.E Datapath BufTer Size. The CAIS shall provide facilities for the specification of the sizes of
input/output data path buffers during process execution.

3 There are interactive systems which buffer hundreds of characters for output and dump them at intervals
sometimes measured in minutes. Without this control, it becomes necessary to force the processing of
these buffers explicitly at many points in a program. In other instances, the default buffer size may be
less than the size of a frequent large message, resulting in shortsighted buffer overflows. This also
provides a means of permitting the programmer to shrink buffers when he can enhance efficiency by
knowing details about his data.

The buffer which cannot hold one block may lose data. The buffer which is too large may hoard needed
data, interfering with timelir'ess. Any incorrectly sized buffer can interfere with efficiency.

I
I
I
1 3-47 3

R..lonale for the RAC Draft 13 Sept 1985

G.SF Datapath Flushing. Tte CAIS shall provide facialtes for the removal of all buffered data

from an input/output datapath. I
In a reset after an exception, pending data often becomes irrelevant. A user of an APSE tool may request
the suppression of the output he is seeing (e.g. with control-O), and it becomes necessary to prevent the
output of what may be an immense buffer. A consumer may refuse to consume, and the buffer must be
eliminated to permit the process to terminate. The disposition of the data in the buffer is of no

consequence.

Note the difference between flushing (6.3F) and processing (8.3G) a buffer.

I
I

6.3G Output Datapath Processing. The CAIS shall provide facilities to force the output of all

data in an output datapath.

The word flushing can be used in two senses. One sense is the concept used here: to force the processing
of pending data units gathered in a buffer. The second sense is used in 6.3E: to discard the contents of
such a buffer. 3
The data is sent despite the buffer not being full. This facility is often useful in debugging, when a
paused process has done output which cannot yet be examined. It can also be used when it becomes clear
that the buffer will not be soon fled. This may also be used when a datastream is redirected.

I

6S.H Input/Output Sequencing. The CAIS shall provide facilities to ensure the servicing of 3
input/output requests in the order of their invocation.

It seems apparent to a programmer that if he calls two subroutines and the fust outputs an A, the second
a B, the A should come out first. The Ada language does not define input/output at a sufficient level of I
detail to ensure this. It is particularly important that prompts come out before the response is read.
This has been a major area of difficulty in the PascaJ language. 3
There is debate over the level at which such sequencing should be required. Within a single datapath, it
is most likely to be compromised when separate tuks use that datapath. Sequencing could also be
required between datapaths accessing the same device or different devices, or between datapaths used by I
different processes, even different processors. The appropriate level of control is left to the CAIS
specifiers.

Most of this functionality can be provided by setting the buffer size to sero, but this can have terrible

I
3-474 !I

le for the RAC Draft 13 Sept 1985 3 Sept 1985

Ice consequences. In the absence of a buffer, output must happen when its command is .t/ output of
Compiler optimisations are still able to change the order of execution of output commands. :onsumer(sa

* pe sequence,

tirement places constraints on the runtime support of the Ad& language, and thus on the
:s of the language itself. This constraint is in conflict with requirement 5.5B. The constraint is

sequence of a particular CAIS design, but is rather a characteristic of a reasonable development LCe with the

. manner on
at interfaces
t in systems

editors will3 -ocessor and

Ia Unit Transmission

I ata Unit Sise. The CAIS shall provide input/output facilities for communication with
squiring 5-bit, 7-btt, and 8-6it data units, minimally.

dre the normal ASCII transmission widths, as suggested by the use of ASCII in the Ada language. icluding the

idth of the Baudot teletype code. fe facilities
-es of units

n may allow
as separate

ared.

aw Input/Output. The CAIS shall provide the ability to transmit/receive data units and

s of units uithout modification. (Ezamples of modification are transformation of units,
i of units, and removal of units).

I ivers suppress nulls, check line lengths, and otherwise alter the data they pass. This requires that
.ration be suppressable.

Steluding the
Ivices consider every byte to be data, and can receive values as the ordinal positions of bytes in de facilities

ie sequences (a nuNl byte means sero). In order to talk to these devices it is necessary to send them .es of units

atrol certain

rery unit of

3

1 3-47 5

Rationale for the RAC Draft 13 Sept 1985

.4F Modification. The CAIS shall specify the set of modifications that can occur to data units in

an input/output datastream (e.g., mapping from lower case to upper case). The CA.S shall provide
facilities permitting a process to select/query at execution time the subset of modifications that may

occur (including the null set).

Many devices do not support lower case, and must have the transformation performed outside to operate
correctly. Others need every unit of information as transmitted, and may not treat it as a character.

B.4G Input Sampling. The CAIS shall provide facilities to sample an input datapath for available

data without having to wait if data are not available.

A debugger may run the target processor until the user types a command. The program can set up a task
to read the command and run the processor until the command is read, safe in the guarantee of 6.7A. A
communications program may wait for input from a message source, updating some factor periodically if
no message is received. This can also be done with a pair of tasks. In both of these cases, the tasking

model is conceptually different from the model of non-waiting polling. This requirement permits the
design of tools to be flexible in choosing either model.

6.4H Transmission Characteristics. The CAIS shall support control at execution time of host
transmission characteristics (e.g., rates, parity, number of bits, half, ifull duplex).

Many terminals support a large number of characteristics, including baud rate, duplex, parity, number of
bits, handshake protocols. Explicit control of these permits the user of a tool to control how his terminal

interacts with the APSE. It also permits the tool to access devices which do not conform to the system
standard.

This allows a tool builder to deal with a Virtual Device of the appropriate type and enhance portability

by deferring these device specific characteristics to an instance of tool execution.

3-476 i

I Rationale for the RAC Draft 13 Sept 1985

I
I
I

6.41 Type-Ahead. The CAIS shall provide facilities to disable/enable type-ahead. The CAIS shall
provide facilities to indicate whether type-ahead is supported in the given implementation. Te CAIS

shall define the results of invoking the facilities to disable/enable type-ahead in those implementations
that do not support type-ahead (e.g., null-effect or exception raised).

I Type-ahead is similar to buffer control, but is generally only required to be present or absent. If
keystrokes can be saved for the future, a user can get ahead of a slow machine. Tye-ahead can be
confusing, however, when the terminal is used for non-conversational modes, as in modelling process

control.

Type-ahead enhances the interface to an interactive terminal by enabling continuation of input when a

system is insufficiently responsive.

I
I

6.4J Echoing. The CAIS shall provide facilities to disa-le/enable echoing of data units to their

source. The CAIS shall provide facilities to indicate whether echo-suppression is supported in the given
implementation. The CAIS shall define the results of invoking the facilities to disable/enable echoing
in those implementations that do not support echo-suppression (e.g., null effect or exception raised).

Passwords should not generally be echoed. Commands should. When keystrokes have screen-oriented
semantics, their echoing is useless and confusing. if typing C moves the cursor forward one character on
the screen, the echo of C would overwrite the current character. This control is also essential for

windowing, so that the appropriate window may be addressed before echoing is simulated.

I
I
38.4K Control Input Datastream. The CAIS shall provide facilities to designate an input

datastream as a control input datastream.

Control datastreams are special streams in which certain units or sequences cause things to happen. The
standard example is that a CONTROL _ C from the user's terminal aborts a process. This is a special
property of the user's terminal, not a general property of the bit pattern 0000011.

I
I 3-477

Rationale for the RAC Draft 13 Sept 1985

G.4L Control Input Trap. The CAIS shall provide the ability to abort a process bL means of
trapping a specific data unit or data block in a control input datastrearn of that process.

This permits urgent control over a process, even an unwilling process. The most common trap sequences
&re CONTROL _ C and BREAK (which is not a unit sequence).

6.4M Trap Sequence. The CAIS shall provide facilities to specify/query the data unit or data block
that may be trapped. The CAIS shall provide facilities to disable/enable this facility at execution time.

Some programs should not be interruptable, such as login and logotit. They can disable trapping. Other
programs would make good use of catching the character themselves and terminating smoothly.

S.4N Data Link Control. The CAJS zhall support facilities for the dynamic control of data links,
including, at least, jelf-test, automatic dialing, hang-up, and broken-link handling.

Data lnka will be important means of communication between APSES, and perhaps within APSEs. This
sort of control, at the functional level as specified by 6.3A, must be available. Some control sequences are
subject to timing constraints (such as the intercept sequence to intelligent modems), and cannot be
accessed by normal output operations, as these do not guarantee the correct timing.

3-478

3 Rationale for the RAC Draft 13 Sept 1985

3 6.5 Data Block Transmission

.&A Data Block Size. The CAIS shall provide facilities for the specification of the size of aIequenee of units during program execution.

The flexibility of data blocks is needed to support, general protocols, and also to enable communication
with devices which were not specified at the writing of the program. This permits low level
communication with dev;ces known only to the user of the program, controlled by the data used. TheI tool builder can deal with a virtual device, independent of the actual characteristics of particular devices.

I
I

8.8 Data Entity Transfer If portability of tools between APSEs, even identical ones, is to occur, it is
necessary to have the transported data exist outside of the APSE. When the APSEs differ, even in

version, any internal format of data is not guaranteed to match. thus an APSE reading an internal form
is not assured of understanding what is written. This is expected to be the delivery format of programs,3 as well as a way of recording for posterity.

The ,equirement does not explain the effect of converting an entity into the external form when it has
relationships to entities not being converted. Clearly, the external form cannot meaningfully convey a

relationship to something inside the APSE, since the reading APSE will generally not have access to the
writing APSE. It is thus necessary to refer only to those relationships referencing entities included in the
subset of the APSE which is being converted to the external form. This sort of dangling reference is

related to th- consequence of deleteing an entity in section 4.

There is also a potential ambiguity in moving riles (untyped data) from one APSE to &,,other. A file of
digits 20, for example, m~y be meaningless on a new host, and even if it could be semantically
represented, the bit patterns and effective precision may be different. Even the treatment of control
characters in ordinary text riles may differ between APSEs. Consequently, the CAIS must specify which
data tyres in files can be put in the common external form without loss of semantics.

.SA Common External Form. The CAIS shall specify a representation on physical media of a

set of related data entities (referred to as the Common External Form).

3 G.AD Transfer. The CAIS shali provide facilities using the Common External Form to s-,pporl the
transfer among CAIS implementations of sets of related data entities such that attributes and
relationships are preserved.

I

13-479

Rationale for the RAC Draft 13 Sept 19M5

6.7 General Input/Output The requirement for task waiting, 5.4A, is esseatial to the correct

behAvior of input/output. That requirement was originally included here, but was removed as redundant.

Some discussion of the importance of this to input/output is appropriate.

The concept of task waiting has been a surprise to many readers of the Ada Reference Manual. Some

interpret the standard to require that the waiting of one task in a program cannot interfere with another

task. while others see no such restriction. Some validated implementations do wait all tasks. This is a

characteristic of the scheduler, which is part of the implementation of the CAIS and the language, and

this specification governs the semantics of the scheduler.

In chapter 9 of the Reference Manual for the Ada language, paragraph 2 says *Tasks are entities whose

executions proceed in parallel in the following sense. Each task can be considered to be executed by a

logical procesor of its own. Different tasks (different logical processors) proceed independently, except at

points where they synchronize.* Independence of tasks requires that one taks should not be delayed by

input/output wait in another. Execution is what proceeds, and execution is the process by which a

statement achieves its action (chapter 5, paragraph 1). Nothing achieves its action by waiting on another
task with which it is not in rendezvous.

The alternative is to leave this open, as the Ada language is officially interpreted to do.

Some programs need to talk to the user when, and often because one of their tasks is suspended awaiting

a resource or a request. When this happens, it is desirable that the communication with the user does not

wait for the other event, since it may never happen.

This requirement has an impact not only on the packages which implement the CAIS, but also on the

implementation of the language itself.

It is argued that this is in contradiction with 5.5B.

5.7A Waiting. The CAIS shall cauze only the task requesting a synchronous input/output operation

to await completion.

6.7B Unsupported Features. The CAIS should provide facilities to control the consequences when

the physical device toes not have all of the features of the virtual device.

If the device does not have cursor control, it may be desirable to let the escape sequences echo on the

screen for debugging purposes (..e. to treat the device as another device), to do nothing, or to raise an

exception. The control over this behavior is not required in all interfaces, but an explanation should be

offered as to why the selections were made. The exception response is technically general in that the

calling program can handle the exception with whatever action is desired, but this may raise high costs in

complexity and runtime efficiency.

3-480

Rationale for the RAC Draft 13 Sept 1985

i RAG RATIONALE Comment Form

N ,section: ,RAC version 11 Sept 1985

i !submitter 'date

!1-line topic/subject.

!extended comment or recommendation

I
I
I

!rationale for recommendatlon:

I
I

'disposition by RACWG.

Ii
[Send via ARPA/MILNET to RAC-Comment*Ada20, or

via U S Mali to "Patricia Oberndorf/Hans Mumm.
Code 423, NOSC. San Diego, CA 92152"]

I
I
I

I 3-4 81

DRAFT
DRAFT
DRAFT
DRAFT
DRAFT
ORAFT

Guidelines and Conventions
Working Group

Ada Tool
Transportability Guide

DRAFT
DRAFT
DRAFT
DRAFT
DRAFT
DRAFT
DRAFT

3-482

I
CONTENTSI

CHAPTER I INTRODUCTION

C T 1.1 WHY THIS GUIDE WAS WRITTEN1-1
1.2 DEFINITION: TRANSPORTABILITY1-1
1.2.1 Things That Can Hinder Transportability 1-3
1.3 THE SIDE-EFFECTS OF STRIVING FOR TRANSPORTABILITY 1-3
1.3.1 The Least-Common-Denominator Problem- 4
1.3.2 The Project Proposal -4
1.3.3 Project Performance 1-4
1.4 LEVELS OF TRANSPORTABILITY 1-5
1.5 THE CONTENTS OF THE GUIDE 1-7
1.6 THE GUIDE'S SPECIFIC USES 1-8

CHAPTER 2 REFERENCES

ICHAPTER 3 ADA LANGUAGE CONSIDERATIONS

3.1 INTRODUCTION. 3-
3.2 PRAGMATIC LANGUAGE RECOMMENDATIONS 3-2
3.3 GUIDELINES SYNOPSIS 3-4
3.4 STANDARDS SYNOPSIS 3-7I

CHAPTER 4 PROGRAM DESIGN AND STRUCTURE

4.1 INTRODUCTION 4-1
4.2 ENCAPSULATION AND ISOLATION 4-1
4.3 SOFTWARE COMPONENTS. 4-2
4.3.1 Importing Components 4-2
4.3.2 Designing Components 4-44.3.3 Multiple Body Implementations 4-54.4 USING EXISTING AND PROPOSED STANDARDS 4-6

C,1AP' TR 5 APSE CONSIDERATIONS

5.1 CONFORMANCE TO CAIS...........
5.2 MINIMIZING APSE DEPENDENCIES 5-3
5.3 NON-CAIS SUPPORTED TOOLS 5-6
5.3.1 Hybrid Environments 5-6
5.3.2 Non-CAIS Supported Tools 5-10

CHAPTER 6 STYLE CONSIDERATIONS

6.1 INTRODUCTION .-. 6-1
6.2 PROLOGUE DCCJMENTATI4ON 6-.
6.3 NAMING CONVENTIONS

3-483I

CHAPTER 2

INTRODUCTION

1.1 WHY THIS GUIDE WAS WRITTEN

The Ada Programming Support Environment (APSE) Interoperability and
Transportability (IT) Management Plan [NOS83 I defines a set of
objectives for the APSE IT effort. These objectives are:

1. to develop requirements for APSE IT,

2. to develop guidelines, conventions and standards to be used to
achieve IT of APSEs,

3. to develop APSE IT tools to be integrated into both the AIE and
ALS,

4. to monitor AIE and ALS development efforts with respect to APSE
IT,

5. to provide initiative and give a focal point with respect to APSE
IT,

6. tn develop and implement procedures to determine compliance of
APSE developments with APSE IT requirements, guidelines,
conventions, and standards.

This guide addresses point 2 above in the area of tool
transportability. As this guide develops and is presented in public
forums, it will evolve into a form that is both realistic and useful
for the APSE tool writer.

1.2 DEFINITION: TRANSPORTABILITY

Let us first look at some well established definitions of "portable'
and "transportable" software [COW76].

3-484

I
iI NTRODUCTIG

software software

I Completely transportable software tends to be widely applicable,
extremely well defined, and completely standard. While completely
non-transportable software tends to be specific in nature, either in
regard to the target, or host, or both, narrowly applicable, and
completely non-standard. With standardization the software that
falls in the middle of the continuum can be made to skew to the left.
If even a small degree of transportability can be gained, both the
software rehost engineer and the software maintenance engineer will
be grateful. Money and time will have been saved.

1.2.1 Things That Can Hinder Transportability

Many factors can hinder transportable software. A representative
list include:

1. Language subsets and supersets,

2. Language ambiguities,

3. Timing differences between APSEs,

4. Memory size and type across APSEs,

5. Differences in I/O equipment,

6. Machine arithmetic differences,

7. Representational differences,

8. Implicit use of system facilities (e.g. large address space),

9. Implicit use of KAPSE facilities,

10. The structure of the database,

11. Asynchronous events,

12. non-standard and differing communication protocols.

1.3 THE SIDE-EFFECTS OF STRIVING FOR TRANSPORTABILITY

II
I

I 3-4 85

INTRODUC 7O

As a company develops a large base of in-house transportable Ada
packages, its overall efficiency, productivity and precision
increases. This can be used to significant advantage when bidding
for a contract, allowing the company to bid lower with greater
confidence.

Similarly, when a software proposal is under evaluation, the proposed
reuse of proven software can

* decrease the evaluation phase,

* increase the degree of confidence in the proposed cost and time
estimates.

1.4 LEVELS OF TRANSPORTABILITY

Below is a diagram showing an onion skin model of transportability.
When transporting software many levels can exist each having a set of
unique problems.

-- more transportable

/ Distributed Support Environment \

/ Conventional APSE

-00- Tolse t

I Tool I

1 1/ IComponent \
111 \

111 /1/ I Language I1111 V I I I I
II I\ __ _ _ _ _ _ _ _I I I I
I \ / I I

/

As we work our way in, the ability to transport increases (as the
level of complexity decreases).

At the outermost level a Distributed Support Environment exists.
This environment provides the systems developer with a uniform
support environment that spans computer systems. To transport such a
distributed support environment requires tremendous work. It is far
beyond the scope of this document to address the transportability of

3-486

1

INTRODUCT:CN

m special communication subsystems (networks, etc).

Similar demands may exist for transporting a tool from one system to
another. If a transportable design was implemented for the given
tool, then transportation would entail :he rehost of those software
components that are system specific. And, of course, the bottom line
is the programming language. If a standard language is used that is
common across machines, then the transportability of the components
is enhanced (thus increasing the transportability of the tools,
toolsets, etc).

This document follows this pattern working out from the center.
Standards and Guidelines exist for those areas that are well-defined.
For those areas not well defined, issues are brought forth and
discussed.

1.5 THE CONTENTS OF THE GUIDE

IThis guide contains 6 chapters and an appendix:
1. This introduction,

2. A list of references,

. 3. Ada language considerations,

This chapter will present guidelines and standards concerning the
use of the Ada language. These items are presented in the same
order as they appear in the Ada LRM.

4. Program Design and Structure,

This chapter presents the concepts of encapsulation and
isolation, software components, existing and proposed standards.

5. APSE considerations,

This chapter presents transportability issues associated with
APSEs.

I 6. Style considerations

Ada programming style guidelines and standards are presented with
accompanying discussions of transportability.

An appendix presents a case study of transporting an Ada software
tool from one host environment to another.

I

~3-4 87

CHAPTER 2

REFERENCES

[B0084 Booch, G., "Software Engineering With Ada,"
Benjamin/Cummings Publishing Co, Inc. Menlo Park, CA,
1983.

CCOW76] Cowell, W. Ed., "Lecture Notes in Computer Science -
Portability of Numerical Software," Workshop, Oak Brook,
IL, June 21-23,1976, Springer-Verlag, New York.

[DOW82 3 Downward, J.G., "Software Migration from RSX to VMS:
Programming for portability," DECUS Proceedings, Anaheim
CA, December, 1982.

[FOR78] Ford, B., "Parameterization of the Environment for
Transportable Numerical Software,* ACM Transactions on
Mathematical Software, Vol.4 No.2, June 1978, pp 100-103.

CHER81 3 Herman, E.A., "Transportability of Instructional Computer
Programs: Issues and Examples,* NECC 1981, pp 18-23.

[JOH79 3 Johnson, A.G., "Transportability of Software," Automatic
Testing Conference, 1979, Session 3.

[KIT85 3 KAPSE Interface Team (Ada Joint Program Office), "Proposed
Military Standard Common APSE Interface Set (CAIS)",
January, 1985.

CNIS84 I Nissen, J. and Wallis, P., editors, "Portability and Style
in Ada," Cambridge University Press, Cambridge, United
Kingdom, May, 1984.

[NOS82A] Naval Oceans System Center, Kernel Ada Programming Support
Environment (KAPSE) Interface Team: Public Report Volume
I, NOSC Technical Document 509, Naval Ocean Systems Center,
San Diego CA. l-April-1982.

3-488

I
REFERENCES

[T183J] Texas Instruments, "APSE Interactive Monitor (AIM)
Configuration Management Plan (CM)," Contract
N66001-82-C-0440, 28 March 1983.

[TI85A Texas Instruments, "APSE Interactive Monitor (AIM) User's
Manual (UM)," Contract N66001-82-C-0440, July 1985.

[TI85B I Texas Instruments, "APSE Interactive Monitor (AIM) Program
Design Specification (PDS)," Contract N66001-82-C-0440,
July 1985.

[TI85C 2 Texas Instruments, "APSE Interactive Monitor (AIM)
System/Integration Test Procedures (SITPRO)," Contract
N66001-82-C-0440, July 1985.

iTI85D I Texas Instruments, "Installation and Maintenance Guide for
the APSE Interactive Monitor (AIM)," Contract
N66001-82-C-0440, July 1985.

[TRE81I Treiber, A.E., "Interoperability Through Effective
Information Exchange Standards," The Journal of Systems and
Software 2, pp 337-350(1981).

EZOB75] Zobrist, D.W. et.al., "Software Standards and CAMAC ...a
realtime demonstration," Instrumentation" Technology, March
1975.

TI REFERENCES - TBD TBD TBD TBD TBD TBD TBD TBD TBD

I
I
I
I
I
I
I
I
3 -- 3-489

CHAPTER 3

ADA LANGUAGE CONSIDERATIONS

3.1 INTRODUCTION

This chapter presents the Ada language considerations for enhanced
transportability of Ada source code. This chapter contains two
parts: pragmatic language recommendations and a set of standards and
guidelines for programming in the Ada language. The standards
(mandatory) and guidelines (reconmended) presented here are copied
from [NIS84]. For a more complete treatment and rationale
presentation please refer to the referenced material.

3-490

I
ADA LANGUAGE CONS:DERAT'O:NS

By Expression:

Number of operators 100
Number of objects 100
Number of functions 1003 Depth of parenthesis nesting 50

By subprogram:

Number of declarations in a subprogram 100
Number of formal parameters 100

i By Package:

Number of declarations (visible) in a package 500
Number of declarations (private) in a package 500

i By task:

Number of accepts 100
Number of entries 100
Number of select alternatives 100
Number of delays 100

I
I
I
U
I
I
I
I
I
I

i 3-49 1

ADA LANGUAGE CONSIDERATION

bits for the model numbers should be avoided. (32 bits is the
largest accuracy likely to be supported on small machines)."

Ada LRM Section : 3.5.9

GUIDELINE: "Constrained types should be used for integer discrete
ranges, especially if a large range is required."

Ada LRM Section 3.6.1

GUIDELINE: "The collection size should be specified if possible by
using t'STORAGE SIZE expressed in terms of the size of the object of
the access type, divided by system.storage unit. However, due
allowance should be made for the space requirea by the allocator for
tables and links, etc (see LRM 13.2)."

Ada LRM Section 4.8

GUIDELINE: "Renaming should not be used to change the name of any
entity from the package standard (see LRM Appendix C), or
machine-dependent values from the package system. This ensures that
the use of any such machine-dependent values in the user's program
remains obvious."

Ada LRM Section : 8.5

GUIDELINE: "Guards should only depend upon local variables of the
task in order to avoid the possibility of side-effects."

Ada LRM Section : 9.7.1

GUIDELINE: "No assumptions about the range of values that can be
specified in the priority pragma should be made. Similarly, no
assumption about the number of different priority levels should be
made."

Ada LRM Section : 9.8

GUIDELINE: "The pragma shared should not be used."

Ada LRM Section : 9.11

3-492

I
ADA LANGUAGE CONSIDERATCN

1 3.4 STANDARDS SYNOPSIS

STANDARD: "No control character (known in the LRM as non-graphic
characters) should be used except newline or the equivalent pair
carriage-return/line-feed."

5 Ada LRM Section 2.2

STANDARD: "Implementation defined pragmas must not be used."

I Ada LRM Section : 2.8

STANDARD: "The evaluation of default expressions in an object
declaration must not have side-effects on values in other expressions
in the same declaration."

I Ada LRM Section : 3.2.1

STANDARD: *No assumption must be made about the order of evaluation
of the bounds in a range contraint."

Ada LRM Section : 3.5

STANDARD: "Values of type INTEGER must lie within the range
-TT2767..2767 with corresponding ranges for NATURAL and POSITIVE.
Integer ranges outside the range -32767..32767 must not be used
except to define new integer types."

Ada LRM Section : 3.5.4

STANDARD: "The type names SHORT INTEGER and LONGINTEGER must not be
used explicitly."

Ada LRM Section : 3.5.4

STANDARD: "Values of the type outsid3 the range of sate numbers
shouid not be assumed."

I Ada LRM Section : 3.5.6

I
I

I 3-493

ADA LANGUAGE CONSIDERAT:CN

Ada LRM Section 4.1.1

STANDARD: "A function in an expression of an indexed component must
not change the prefix on ancther index of the same component as a
side-effect.*

Ada LRM Section 4.1.1

STANDARD: "No assumption must be made about the order of evaluation
of the name, prefix and discrete range of a slice."

Ada LRM Section 4.1.2

STANDARD: "Evaluation of expressions in component associations in
aggregates must not have side-effects affecting variables appearing
in other components of the same aggregate."

Ada LRM Section : 4.3

STANDARD: "The evaluation of operands (except operands of short
circuit control forms) must not have side-effects affecting other
operands in the same expression."

Ada LRM Section : 4.5

STANDARD: "Unless the numbers correspond exactly to model numbers,
thTenthe result of equality or inequality between floating point
numbers should not be relied upon."

Ada LRM Section : 4.5.7

STANDARD: "It must not be assumed that a real static expression is
evaluated with greater accuracy than that of the target machine."

Ada LRM Section : 4.9

STANDARD: "Assignments in which the evaluation of the right hand
expression can change the evaluation on the left or vice versa must
be avoided."

Ada LRM Section 5.2

?1-494

ADA LANGUAGE CONSIDERATCNS

Ada LRM Section 9.6

STANDARD: "Evaluation of guards must not have side-effects changing
the state of other guards in the same selective unit."

Ada LRM Section : 9.7.1

STANDARD: "The program should not rely on the algorithm used to

choose between several open alternatives in a selective wait."

Ada LRM Section : 9.7.1

STANDARD: "A program must not rely upon the use of priorities to
enforce synchronization."

Ada LRM Section : 9.8

STANDARD: "No assumption should be made about the moment at which
the task being aborted becomes terminated."

Ada LRM Section : 9.10

STANDARD: "The main program must be a parameterless procedure."

Ada LRM Section : 10.1

STANDARD: "No assumption should be made as to the precise condition
under which CONSTRAINT_ ERROR, NUMERIC ERROR, PROGRAM-ERROR,
TASKINGERROR, or STORAGE ERROR exceptions are raised."

Ada LRM Section : 11.1

STANDARD: "The suppress pragma must not be used to achieve any
change in the meaning of a program.'

Ada LRM Section : 11.7

STANDARD: "Programs must not depend on the order of evaluation of
actual generic parameters."

Ada LRM Section 12.3

3-495

CHAPTER 4

PROGRAM DESIGN AND STRUCTURE

4.1 INTRODUCTION

This chapter presents guidelines for program design and program
structure that can enhance transportability.

4.2 ENCAPSULATION AND ISOLATION

Encapsulation means placing procedures, functions, exceptions, types,
etc. that all pertain to the same object into one package.
Isolation means hiding a particular implementation in the package
body. Typically isolated packages do not depend on other packages
(they stand alone). Encapsulation and isolation promote:

* Transportable programs,

* Transportable packages,

* Ease-of modification,

* Ease of understanding,

* Potentially inefficient implementations.

Encapsulation and isolation guidelines:

Machine dependent facilities must be isolated (and thus hidden)
in packages and accessed only through the package interfaces
(procedures and functions).

* A package should represent one unique object (or collection of
identical objects) and the operations upon this object.

3-496

PROGRAM DESIGN AND STRUCTURE

components for purchase, it is possible to obtain software to perform3 a variety of tasks. The risks that must be recognized include:

" The software description seems to meet part of the need, however
it may require some (minor or major) modification to achieve the
complete functionality required,

" The software documentation is poor or non-existent resulting in
increasing the cost and time of understanding the software
itself,

* the software does not work,

1 * the software was developed on a non-ANSI compiler (yes, these
things exist, and much software is being written for them),

* the software uses host OS facilities that may or may not be
available on another system,

i * the software was not designed or implemented to be transportable,

* local compiler and/or run-time bugs may make the software fail.

There are enough risks listed above to warrant the following
statement:

Do not plan on using untested and/or unfamiliar softwarecomponents for a time or cost constrained project unless
the component has been thoroughly checked out ahead of

i time.

The desire to go out and grab public domain software to embed in a
developing product can be irresistable (but typically only the first
time).

I
I

I
I
I
1I 3-497

PROGRAM DESIGN AND STRUC7TUR:

* the semantic meaning of each interface, type, and exception,

* the recompilation order,

* the implicit exceptions that can occur (constraint error,
tasking-error, etc),

any system dependencies, where they are located, exactly what
they do, and how they do it,

any compiler/run-time work-arounds that were needed to get the
component to compile and run on the development machine,

4.3.3 Multiple Body Implementations

The nature of encapsulation and isolation supported by Ada (and other
languages) can allow multiple implementation oz the same
specification.

Typically, a package is designed by first producing a specification,
either in PDL or more often, in Ada itself. From here the spec can
be handed off to someone else to implement. Various implementations
are possible, and each has a set of advantagest

1. the simple stub. A stub can be generated that simply returns
when called. Functions return fake values, as do procedures with
OUT parameters.

2. statistics gathering/debugging stub. This is a stub that could
serve at least three functions:

- gather statistics regarding number of times the unit is

called,

- produce debugging information at each call,

- produce statisticall, correct results. This could mean
waiting an appropriate length of time (or consuming an
appropriate amount of resources) based either on simple
tables or perhaps some random variate generator(s). Of
course the semantic meaning of the contents may be inaccurate
or meaningless.

3. a transportable Ada implementation,

3-498

CHAPTER 5

APSE CONSIDERATIONS

I
The Common APSE Interface SET (CAIS) [KIT85] defines a set of
standard interfaces that should promote APSE and tool
transportability. These interfaces can be used to create
information structures, to run and communicate with processes and
to interact with hardware devices. Even though one standardizes
on these interfaces, there are some CAIS related issues that needto be addressed to improve the transportability of APSE tools.Some of these issues that need to be addressed include:

5 * improved tool protocols,

* conventions on how the CAIS is used, and,

* how tools are designed.

Also, we must recognize that APSEs will make use of existing tool3 sets to support the development of applications.

This chapter discusses different strategies on how one can further
improve transportability of tools developed on top of the CAIS.
Even though the use of the CAIS is a significant factor forimproving tool transportability, it is not sufficient to guaranteethat tools which conform to the CAIS, are transportable.

1 5.1 CONFORMANCE TO CAIS

A tool is considered to conform to the CAIS if all of the tool's
interactions with the environment are performed through the
facilities provided by the CAIS. Figure 1 illustrates thedifference between a tool set that conforms to the CAIS and a tool
set that does not conform.

3
I
I

i 3-499

APSE CONSIDERATION!

control is absolutely necessary to enforce access control and to
allow the APSE to control and manage all the data objects created
using the APSE. The key to providing control over the APSE
database lies in the ability to enforce access controls and to
ensure that the data structuring rules defined by the CAIS are
followed. Only if all the tools conform to the CAIS interfaces
can we assume that there is some control over how data is created
and accessed. For this reason one should avoid instances where
the tools bypass the CAIS in order to access data managed by the
APSE. In reality, requiring that all APSE tools conform to the
CAIS is somewhat idealistic for the following reasons:

" There exists a large base of tools that have been developed
before the CAIS standard is(was) established. These tools
will continue to be used to support existing applications as
well as new applications.

* The CAIS does not address all the possible tool needs.

* Many specialized applications will require the use of
commercially available tools that may never conform to the
CAIS.

We need to plan for a transition period during which time tool
will migrate to conform to the CAIS.

5.2 MINIMIZING APSE DEPENDENCIES

Although conformance to the CAIS will aid in tool
transportability, it is not sufficient to ensure that the cost of
transporting tools will be low. Tools can be tightly coupled to
the environment by building into the tool intimate knowledge about
the way data is structured and managed by an environment. A
tool's knowledge of how an environment structures and manages data
will affect the transportability of tools to other APSEs that
structure and manage the same data in a different manner, There
are at least two strategies that can be used to further improve
tool transportability. First, the tool design must isolate the
APSE dependent code so that it can easily be modified to interface
to a different APSE. Second, the tool can assume a simple
interface and place the burden on the environment to provide the
data that it needs in this simpler form. The following are
examples of how one can improve tool transportability by applying
these strategies.

Tools (even if they use the CAIS) need to be developed to minimize
dependence on other tools in the toolset and the way a particular
APSE structures it's data. For example, one should be free to
select between different compilers because they meet desired code
efficiency requirements and to readily integrate these compilers

3-500

1
APSE CONSIDERATION!

the environment structures its data and makes use of this
knowledge to locate the data that it needs. The dotted lines show
that the tool knows about the entire data structure and uses the
knowledge to locate the data that it needs. Because this
knowledge is built into the tool it will take more effort to
transport the tool to a new environment that structures its data
differently. Figure 2(b) illustrates a case where the environment
knows what information the tools needs and presents to the tool
the exact information needed by the tool. This is indicated by
the fact that the environment directs the tool to operate on
exactly the data objects that it needs. This information can be
presented to the tool in a simple standard format. Assuming that
this strategy is adopted, the cost of transporting tools to
different environments will involve the modification of an
existing part of the environment to present the information to the
new tool. The information presented to the tool is then accessed
using CAIS facilities.

li I I
I Tool _ I Tool I

C I I S
I_ _ I I i

B C B_ C

I Ii I I
Dt I _ _ _

I I I I I
F G F G
F (a) (b)

Figure 2

.da c CpLUICLS a d AIC illustrate this point. It
is highly desirable to incorporate many different compilers into
an APSE to address different development needs (degree of
optimization, support for different targets). If a compiler is
intimately aware of how an APSE structures its Ada libraries and
how the library objects are managed (configuration management)
then the compiler will be tightly coupled to that environment. A

I
I
1*3-501

APSE CONSIDERATION

User User User

-Il I
I Tool I... i Tool n I i DB Tool I

II I I I I
-F---I I I -

I ________________I ____ **I ______

I C A S I DBMS

Host Operating System

Figure 3

In such development environments there may be tools that talk to
both systems. The following discussion will use the example of
incorporating a database management system as significant tools
system that is to co-function with the APSE. Other development
systems may be substituted for the DBMS in this example.

A long term solution would be to provide portable databases
implemented on top of the CAIS as illustrated in Figure 4. In
this case, all the data is managed by the APSE through the CAIS
providing central control over access to the data. All the tools,
including the DBMS, are transportable.

3-502

I
I APSE CONSIDERATION!

some applications there is d need to integrate tie use of the
existing DBMS and its data. The question is how to integrate this
DBMS with its tools and data into an APSE tool that attempts to
conform to the CAIS.

i - Treat DBMS as a CAIS process where all interactions with the

DBMS are through process messages

3 - possible efficiency considerations

- possible problems with user interfaces

I - how to maintain the necessary relationships between the
DBMS data definitions and the corresponding definitions
included in Ada programs. The problem is that definitions
defined and maintained by the DBMS are not controlled by
the APSE. This provides a real consistency maintenance
problem

- Tools developed to interface between the DBMS and the APSE
would use the process communication protocols to communicate5 with the DBMS

User User User

I I - I I - II
I Tool I i ... I Tool n I I DB Tool II II

III
I CAI S I virtual DBMS I

I 1I I

I I I I I DBMS

I I Host Operating System

3 Figure 6

I
I
I
I 3-503

APSE CONSIDERATIONS

Interface I I
I Tool 1 I I Tool 1 I

I APSE I I
I Object
I Structures 1

I Interface I I
Tool n I I Tool n I

Figure 7

Interface tool has knowledge of APSE object structures, how
these structures are managed (CM). They may be used for both
CAIS conforming and non-conforming tools.

- Interface tool also knows how to present data to each tool

Inefficiency because of additional interface layer

- What is an interface tool:

- An interface tool may be a CAIS process where data is
passed between the tool and the environment via the
process message passing facilities. This facility might
be used to support the use of interactive tools.
Especially if tools dynamically create objects and
relationships in the APSE database

- Some commercial off-the-shelf (COTS) tools will not
conform to the CAIS. In this case the interface tool will
convert the CAIS data structures to those expected by the
tool (i.e. use existing host file system directly).

Advantages:

- Can add new tools quickly

3-504

I
i
I
I

I CHAPTER 6

3 STYLE CONS IDERATI ONS

3 6.1 INTRODUCTION

Transporting a software tools usually involves taking an existing tool
at the source level, and attempting to recompile, relink, and run it
on a new system. It is common that the group of persons doing the
transport do not know the system. Transportability can be enhanced if
these persons can grasp the meanings of the various program units and
are able to recognize the Ada constructs and program structure easily
and quickly. Standards and guidelines on coding practices is given in
this section.

The coding practices are specified as either "standards" or
aguidelines." 'Standards" are mandatory requirements while
guidelines* denote preferred practices.

I 6.2 PROLOGUE DOCUMENTATION

This section specifies the minimum information to be included in the
prologue of a program unit. The prologue provides for program version
identification to facilitate configuration management.

STANDARD: Each seperately compiled program unit shall have an
associated prologue directly preceding the program unit.

STANDARD: All prologue information for each program unit must be
present before the code is placed under configuration management

i control.

I
I
I
I
3 3-505

I
STYLE CONSIDERAT:CN3

6.4 DECLARATIONS USAGE

6.4.1 COM). NTING DECLARATIONSI

GUIDELINE: Each constant, type, and object/variable identifier
declared should be accompanied by a brief COMMENT if the identifier is
not self-explanatory. The comments should be aligned as closely as
possible for enhanced readability. This guideline is illustrated in 3
Example 1.

6.4.2 DECLARATION FORMATTING

STANDARD: All declarations shall be aligned and each one shall be on
a separate line. Identifier lists shall not be used. This standard
is illustrated in Example 1.

GUIDELINE: The grouping of declarations should be consistent and
follow one of the methods described below. The decision as to which 3
grouping method will be enforced shall be made by the project manager.
The grouping methods are :

1. All declarations possessing the same characteristics should be 3
grouped together and commented accordingly. For example, all
CONSTANTS shall be together, all TYPES together, etc.
Additionally, SUBTYPES should immediately follow their respective
TYPES. A blaink line should be used to separate the declaration 5
groups. This guideline is illustrated in Example 1 and Example 1.

2. All declarations concerning the same usage should be grouped 3
together and commented accordingly. A blank line should be used 5
to separate the declaration groups. This guideline is illustrated
in Example 1.

3
I

I
I
I

3-506

I

I
3 STYLE CONSIDERAT:ONS

3 -- day types

type DAY is (MONDAY,TUESDAY,WEDNESDAY,THURSDAY,3 FRIDAY, SATURDAY, SUNDAY);

TODAY : DAY;

TOMORROW : DAY;

-- card types

type SUIT is (CLUBS,DIAMONDS,HEARTS,SPADES);
type VALUE is ('2','3'...'10',JACK,QUEEN,KING,ACE);
type PLAYER is (NORTH,WEST,SOUTH,EAST);
type CARD is

record
SUIT NAME : SUIT;
NUMBER VALUE : VALUE;

end record;
type HAND is array(l..13) of CARD;
type TABLE is array(PLAYER) of HAND;

TRUMPS : SUIT;
FIRST TABLE : TABLE;
SECON5 TABLE : TABLE;

I Example 1. ADA VARIABLE DECLARATIONS

6.4.3 USE OF CONSTANTS

STANDARD: Each character literal or string literal shall be loc:ted
in the constant declarations. This standard is illustrated in Example
1.

STANDARD: Do not embed "MAGIC NUMBER" constants in your code. Such
constants lack significance and are difficult to maintain. ThisI standard is illustrated in Example 1.

I
I
I
I
3 3 -507

STYLE CONS:DERAT:'C

6.3 CODING CONVENTIONS

This section specifies coding practices which apply to Ada statements.

6.5.1 ATTRIBUTES

GUIDEL:NE: The use of attributes is recommended (except as noted in
tFe chapter Language Considerations, above) for maintainability. f
you see a "MAGIC NUMBER", try to use an attribute or declare a
constant.

6.5.2 UPPER/LOWER CASE USAGE

STANDARD: All Ada reserved words shall be one case and all other
names may be mixed case. (reserved words upper case, user defined
words lower case, etc.) Comments may be mixed case except where the
syntax of the English language requires an upper case letter (i.e.
starting of a complete sentence, abbreviations, etc.) This standard is
illustrated in all examples.

6.5.3 STATEMENT FORMATTING FOR READABILITY

STANDARD: Each statement must begin on a separate line. Multiple
statements per line are not allowed. This standard is illustrated in
Example 1 and Example 1.

STANDARD: At least one space must appear before and after all
relational and arithmetic operators. This standard is illustrated in
all examples.

STANDARD: Indentation is approached with "comb' structures. Examples
of proper indentation techniques are shown in Example 1 and Example 1.

3-502

3STYLE CONSIDERATI ON

case STRINGLENGTH is
when 0 0> STRING ERROR;
when l..80 -> COPY STRING;
when 81..160 -> COPY STRING;

STRING LENGTH :- STRING LENGTH - MAX STRING;
when 161 1 162 -> DELETE-STRING;
when 163 a> null;
when others a> raise SYSTEM-ERROR;3 end case;

task SEQUENCER is
entry PHASE 1;
entry
entry PHASE-2;entry PHASE_3;

end SEQUENCER;

task body SEQUENCER is
begin

accept PHASE 1;
accept PHASE 2;
accept PHASE 3 DO

INITIATE LAUNCH;
end PHASET;

end SEQUENCER;

*loop
-- program unit statements

select
accept MAKE DEPOSIT(ID : in ACCOUNTTYPE;3 AMOUNT : in CASHTYPe) do

-- program unit statements
end MAKE DEPOSIT;Or o-
accept MAKE DRIVE UP DEPOSIT(ID : in ACCOUNT TYPE;

(AMOUNT : in CASHTYPE) do
-- program unit statements

end MAKEDRIVEUPDEPOSIT;
else

DO FILING;
end ielect;

-program unit statements
end loop;

3Example 1. STATEMENT ALIGNMENT AND INDENTATION

3
I
U
I3 -509

STYLE CONSIDERAT:C

with SAMPLE;
procedure ANALYZE SENSORVALUES is

ACTUAL DATA : SAMPLE.VALUES:
FITTED-DATA : SAMPLL.VALUES;

procedure GET SAMPLES (DATA out SAMPLE.VALUES) is separate;
procedure LIMIT AMHECK (DATA :in out SAMPLE.VALUES) is separate;
procedure CURVE-FIT (DATA : in SAMPLE.VALUES;

LIMIT: in SAMPLE.VALUES;
FIT : out SAMPLE.VALUES) is separate;

procedure REPORT (DATA : in SAMPLE.VALUES) is separate;

begin
GET SAMPLES (ACTUAL DATA);
LIMIT CHECK (ACTUAL-DATA);
CURVEFIT (ACTUAL DATA, LIMIT DATA, FIT -> FITTEDDATA);
REPORT (FITTED DATA);

end ANALYZE SENSORVALUES;

function IS ODD(VALUE : in INTEGER) return BOOLEAN is
begin

return ((VALUE rem 2) /- 0); [BOO84]
end IS-ODD;

Example 1. PROCEDURE AND FUNCTION FORMATTING

GUIDELINE: The use of the WITH statement without the USE statement is
recommended for understandability and clarity of locations of program
units. This guideline is illustrated in Example 1. [BOO84 I

GUIDELINE: Each subprogram or function should contain only one RETJRN
statement and it must be the statement immediately preceding the END,
unless additional RETURNs enhance the clarity of code. This guideline
is illustrated in Example 1.

3-510

I
STYLE CONSIDERATON!

GUIDELINE: Tasks should be used for concurrent actions, routing
messages, controlling resources, and interrupts. [BOO84 I

GUIDELINE: Generic program units should be used for factoring the
properties of a class of program units, and passing types as
parameters to program units. [BOO84 I

GUIDELINE: Overloading should only be used to name an equivalent
action for different types. [BOO84 I

GUIDELINE: Packages should be named with noun phrases summarizing the
package contents. [B0084 I For example:

-- MATHFUNCTIONS, EARTH-CONSTANTS

I GUIDELINE: Tasks should be named with noun phrases, usually denocing
some action. [BOO84 I For example:

-- TIMER, MESSAGE-ROUTER, LISTSEARCHER

36.5.6 COMPLEX EXPRESSIONS

GUIDELINE: Complex expressions should be parenthesised for readability
and understandability. This guideline is illustrated in Example 1.

-- poor

GAMMA VALUE - BETA VALUE + ALPHA VALUE / 2 ** 5 * 6;

3 -- better

GAMMAVALUE - BETA-VALUE + ((ALPHAVALUE / (2 ** 5)) * 6);

Example 1. COMPLEX EXPRESSIONS

I 6.5.7 LABELS AND GOTOs

STANDARD: The use of LABELs and GOTO statements shall require project3 manager approval on a case by case basis.

6.5.8 TASK TERMINATION

I GUIDELNE: ABOhT should not be used. [BO84]

GUIDELINE: Every server task should have a TERMINA-E statement to achieve
regular termination with its parent unless an ENTRY is provided for

I
U

3-511I

APPENDIX A

TRANSPORTING AN ADA SOFTWARE TOOL A CASE STUDY

A.1. INTRODUCTION

This Appendix presents a case study of transporting an Ada software
tool from one environment, the Data General AOS/VS Ada Development
Environment (ADE)(tm), into another environment, the Digital
Equipment Cor'oration VAX/VMS(tm) environment (with the DEC(tm) Ada
compiler and tools).

The APSE Interactive Monitor (AIM) was developed in Ada in the DG
ADE. The AIM was transported to the VAX/VMS in 2.4 man-months. The
transport turned up many issues including:

* how to deal with compiler bugs,

" problems with run-time storage allocation schemes,

" problems with scheduling and task blocking schemes,

* how inappropriate assumptions can be made with regard to

low-level models of the operating system functions,

* how inappropriate reliance can exist on operating system

services,

* the positive and negative aspects of techniques that improve
transportability,

problems relating to debugging a transported tool.

The use of \da can promote the transportability of source code. This
case study shows that, with appropriate transportability guidelines,
and attention paid to the details, a software tool written totally in
Ada can be moved from one system to another with minor difficulties.

3-512

Transporting an Ada Software Tool :A Case Stud,,

Widw-3ra

InvnetEvrmn
IrOS Po
I E

WOI-
Unrnw
Iros -

UnvmetVewoAHae

5 Interpreter

Ia i

II

Figure 1. The Elements of the AIM

3-513

Transporting an Ada Software Tool : A Case Stu

A.1.2 Design For Transportability

A great effort was made to increase the transportability of the
source :ode. The following techniques were used:

Isolation - the system dependent parts of the AIM were minimized
and placed in packages. A model was developed for each system
dependency, and interfaces developed (the package specification).
The implementation of each interface would need to be rewritten
when moving from one system to another.

" Encapsulation - Object oriented design was used in an attempt to
identify the objects, their attributes, and the operations that
were to be performed on the objects. These objects were placed
in packages. As each package was developed, particular emphasis
was placed on minimizing inter-package dependencies.

* ANSI Ada was used. Chapter 13 issues (optional items) were
isolated into the system dependent packages as much as possible.

A.1.3 The Environments

The DG Ada Development Environment (ADE) [DAT84] is a complete
environment that is entered from the standard DG AOS/VS operating
system. Within the environment all of the AOS/VS command interpreter
commands are available as well as specific ADE commands to support
Ada program development.

The DEC VAX/VMS environment has integrated the Ada compiler into the
standard VAX/VMS program support environment. The compiler is run
rike all other integrated compilers on the system. A support system
for automatic recompilation, program library management, and other
support functions is provided through the Ada Compilation System
(ACS).

Both environments include:

* full ANSI Ada compiler,

" Ada linker,

" Ada program librarian,

* Ada source level debugger,

* project management capabilities,

3-514

I
5 Transporting an Ada Software Tool : A Case Stud

m * computer terminal control and communications,

* process control and communications,

3 * environment variables,

* Ada *length* representation clause.

These operating system dependent interfaces were developed in VMS
over a period of about one man-month. A rather complete description
of these is presented to promote

greater understanding when the problems and issues are discussed insection 3.

3 A.2.2.1 Computer Terminal Control And Communications

The AIM computer terminal control and communications package is known
as SYSDEP. This package provides very elementary interfaces for
controlling and communicating with the computer terminal. The
interfaces are:

* Open the computer terminal - When the terminal is open all
characters written to it will be sent directly to the terminal
immediately (no buffering), and there will be no translation
performed by the host operating system. If the computer terminal3 cannot be opened, then an exception is raised.

* Close the computer terminal - Reset the computer terminal back to
the characteristics it had before OPEN was called. If there are
any outstanding I/0 requests pending on the terminal, they will
be dequeued immediately.

* Read data from the computer terminal's keyboard - At least one
character is read at a time. There is no translation done on the
characters before they are passed back to the calling program.
No echo is performed before passing the characters back to the
calling program (that responsibility is held by the calling
program). This Ono echo" characteristic can be setup in the OPEN
on some systems. Also, a call on READ must not block the entire
process that contains both the reader and the SYSDEP package,
only the task calling the read should be blocked. In this
manner, tasks can be fired up to infinitely loop reading data,
rendezvousing with a buffer task and passing the characters on,
eventually to be read by another task.

write data to the computer terminal - A call on WRITE causes a
string to immediately be sent to the computer terminal. When the
call returns the string either must be on the screen or queued to
the screen (via host operating system services).

I

m 3-515

Transporting an Ada Software Tool : A Case Stud

* getting the terminal name,

" getting the name of the terminal capabilities file (TCF),

* getting initial script file name,

* getting the parse table initialization file,

" getting the help file.

On the Data General these are implemented using files. There must be
files (or links to files) named TERM, TCF, AIM INIT SCRIPT FILE, and
AIMHELPFILE on the user's search path.

On the VAX, "logical names" are used for these environment variables.
A logical name TERM must exist and contain the name of the terminal.
Also, the logical names TCF, AIM INIT SCRIPTFILE, and AIM HELP FILE
must exist and point to valid filenames. -

From the point of view of the calling program there is no difference.
The implementation is hidden in the packages SYSDEP and
DATABASE-SUPPORT.

A.2.2.4 Ada Length Representation Clause

To get the tasks to run on the Data General it was necessary to
expand the task memory size using the Ada representation length
clause (see the Ada LRM section 13.2):

for TASKNAME'STORAGESIZE use TASK SIZE;

This clause can have different meaning on different systems. Also,
this clause had to be placed in a specific place in the source code.

A.2.3 Order Of Integration During Rehost

The AIM was a debugged, running system, when the rehost was
attempted. After the AIM system dependent parts were developed and
debugged, the simplest technique for debugging the AIM was simply to
compile it all, link it, and run it. It did NOT run the first time.
A technique had to be developed to debug the AIM. However, the
debugging information had been removed much earlier in the module
testing phase. Also, the module tests that DID exist were developed
to test the separate modules as they were being coded and developed.
When the modules were integrated into the whole the module tests
became obsolete (more on this in section 2.5 and 3.4).

3-516

I
I Transporting an Ada Software Tool : A Case Stud

* Problems with the terminal model (see section 2.2.4), and

* Problems with task storage allocation (see section 3.3.2).

3 A.3 REHOST PROBLEMS

This section will discuss the problems encountered during the rehost
effort. It is important to note that the VAX/VMS compiler that was
used was a field test version. However, it was validated.

Specific details of the problems will be omitted, to conform to the
field test agreement.
A.3.1 Code Work-Arounds

3 With a language as complex as Ada, problems can be expected when
moving a program from one compiler implementation to another. Ada
validation helps, but does not completely guarantee that bugs will
not appear.

The AIM uncovered a variety of bugs in both compilers. Since the AIM
was developed in the ADE, these were immediately fixed during module
development and testing. During the rehost, however, bug fixing
worked differently. The code work-arounds were developed starting
with the entire system as a whole, fixing modules, recompiling the
separate units, then re-linking the whole AIM and continuing the
tests.

The eventual working program was entirely ANSI Ada, however the code3 work-arounds had two negative effects:

It changed the code. Although this is required due to the nature
of the problem, it can increase risks when moving the code back
to the original system. For maintainability purposes, it was
desirable to have exactly the same code running on both systems
except for the system dependent parts (right down to the blank3 lines and comments).

Recompiling the separate units was inconsequential due to the
fact that the AIM was broken down into such small compilable
units. However, linking was extremely resource intensive.
Easily 70% of the rehost debugging time was spent relinking the
AIM.

I
I
I
I

i3 -517

Transporting an Ada Software Tool : A Case Stud

By doing this, we diverged from the original implementation.
Luckily, a Data General systems programmer gave us the answer to the
dequeueing an 1/O request. By ABORTing the tasks that were doing the
operating system I/O service calls, the queued requests would become
dequeued.

By careful encapsulation and isolation, the ABORT statements were
embedded in the system dependent code.

A.3.3 System Dependencies

There was a variety of problems that surfaced in the area of system
dependencies. Without performing a detailed analysis of the various
systems that you will be rehosting to, you cannot be sure that your
model will work in all the systems.

A.3.3.1 Enforcing A Model (and Making Assumptions About It)

The design of the AIM left nebulous the exact details of the models
for terminal control and communications and for process control and
communication. During implementation these models firmed up and took
shape. The models were implemented as described in sec.tion A.2.2.

As it turned out, these were all very reasonable design criteria, and
almost every one had problems. They will be addressed in the next
two sections in order.
For commui.ication. with the terminal the following capabilities will

be discussed:

* read every character from the terminal with no translation,

* read at least one character at a time,

* exclusive access to the terminal.

For control and communication with processes, the following
capabilities will be discussed:

Spawn a son and pass it standard input and standard output files
- All terminal directed output would be intercepted by the AIM
through the process' standard output file. All process directed
input (that would normally come from the terminal) would be
supplied by the AIM through the process' standard input.

* Deleting a process would shut it down immediately regardless of
what it was doing -

3-518

1

3 Transporting an Ada Software Tool : A Case Stud

has a special character that means "ATTENTION" and allows a user
to log the data to a file, or exit the program. So, the path is:

User terminal <-> Novation modem <-> LAN <-> VAX <-> Hayes modem3<-> TAC <-> ARPAnat host

The characters that the user must concern themselves with are:

3 • XON/XOFF (CONTROL-S and CONTROL-Q),

* percent,

S* tilde,

• at sign '@',

Imodem attention characters (which typically are setable).

The problem can be severe. One solution (which the AIM uses) is
to define an interface to the terminal system dependent package
which allows a calling program to query about the characters that
are important. Passing a CONTROL-S into the function will return
a boolean identifying whether you can expect to see that key
coming from the keyboard, or be able to send that key to the
display screen. This solution is not graceful because it cannot
be determined completely which characters are valid at a given
instant in time due to the variability of the communication
medium that is being used.

Read at least one character at a time - In the Data General
AOS/VS operating system, characters from the computer terminal
can be read only one character at a time. Because of this
restriction, code written to support this aspect of the model,
that is, handling more characters than one at a time, was not
tested until the rehost. The VAX supports reading multiple
characters at a time, and the code was checked out on the VAX,3then eventually moved back to the DG.

Exclusive access to the terminal - This was possible on both

systems, but was found to be not desirable. System messages such
as "Going Down in 5 Minutes" would never "break through" the AIM
to the terminal and could not be intercepted by the AIM on the DG
Qr the VAX if exclusive access were enabled. By simply adding a3-aint screen procedure, this requirement was eliminated.

A suotle problem was discovered late in the rehost. On the VAX an
infinite loop task that makes the operating system I/O call wil.
rendezvous with a buffer task that takes the information an6 places
it into a buffer, from which another task can extract it (at another

II
~3-519

Transporting an Ada Software Tool : A Case StCd*

System engineers at Data General studied the problem and told us
that that functionality was not supported and would never be
supported. They said that it was a design decision made when the
operating system was being developed. On the VAX this worked
just fine.

* Deleting a sub-process would shut it down immediately regardless
of what it was doing - This is NOT the suicide call described in
A.3.2. The system service on the DG O?TERM" is supposed to be
able to do this. However, it could not be made to work. A
similar facility on the VAX worked just fine. So, in this
example, there exists a semantically different meaning for the
interface. Contrary to the terminal communication termination
problem, where the choice was made to make the semantic meaning
the same to preserve the model, here the choice was made to
correctly implement the model on the VAX even though it made the
two models different. In this case it is preferred that the
interface react correctly rather than being consistent and acting
incorrectly.

Detect and control any son processes of a son process (grandson
processes) - This was possible to do on both systems. However,
when attempting the implementation an interesting problem arose.
The Data General AOS/VS operating system uses processes much more
extensively to perform operations than the VAX does. Whenever a
command is issued to the command interpreter to invoke a program
it spawns a new process in which to run the program. These
subprocesses then have the option of spawning new ones (and
typically in an unpredictable manner) and thus treeing down. Not
all commands to the command interpreter cause a subprocess to be
spawned, but most do. Users do not see the spawning of the
subprocesses (unless they look for it). Typically there is no
limit on the number of subprocesses that a user can spawn. They
are resources that are not that precious.

On the VAX, processes are used much less. When a command is
issued to the command interpreter, it either does the command or
replaces itself in the current process with the program to be run
to perform the command. When the command is completed, the
command interpreter is brought back into the same process. It is
expensive and slow to spawn a subprocess on the VAX. Typically,
a subprocess quota of 2 or 3 is sufficient for most users.

This is an inherent and subtle difference in the models presented
by the two operating systems to the programmer. The difference
involves not the presentation of the processes, but their
availability and cost.

3-520

3 Transporting an Ada Software Tool A Case Stuc

I
I
I

I Starlet,, Rft.. St,,-,.
3~ ~ i K~y to . i

II

Tas~c"v. cs~r~I
32 K~y itI

I
U

3 Figure 2. VAX/VMS System Service Package Structure

I

t 3-52 1

Transporting an Ada Software Tool : A Case Study;

A.3.4 Module Testing Baggage

An analogy between module testing and a rockeL taking off can be
effective in demonstrating this issue. A multi-staqe rocket has a
variety of lower stages that are used to boost the payload into
orbit. The goal is to obtain orbit. As the lower stages perform
their function they are discarded. In some more modern systems the
lower stages are recovered, completely refurbished and eventually (if
all goes well) re-used.

Module development and testing works similarly. As the modules are
debugged and eventually integrated into the whole, the testing
baggage becomes obsolete. If a system is to be rehosted, the
question arises: Can the modules testing code itself be re-used?
When rehosting, one works backwards from the original development.
The working system exists and runs correctly on one host. On the new
host, however, it may not work. As outlined above, should the
testing involve debugging the system as a whole, using a debugger,
making changes to the individual modules, then recompiling and
re-linking? Or, should an attempt be made to adapt the old module
tests? This has some interesting issues associated with it:

* Can the modules be moved with the source code onto the new host?

* Should consideration be given to the transportability of the
developed m...ule tests?

* Should the design and documentation of the system reflect the
requirements and methods of rehosting the module tests and the
data required for tnese tests?

Lastly, another approach is possible. After it has been determined
that the system does not work on the new host break it down,
stubbing out low level modules and developing brand new module tests.
This implies a whole new technique for testing which is out of the
scope of this document.

A.4 CONCLUSIONS

The AIM moved from the DG ADE into the VAX/VMS environment in 2.4
man-months. Most of the problems were due to:

* compiler bugs,

* inappropriate assumptions made with regard to the low-level
nodels of terminal and process, control and communications,

3-522

--- - i m ui nmu ||l ibm Ini mlmn lln I

Page Index-i

* I NDEX

Abort, 3-1i Attributes
Access contrul, 5-2, 5-7 delta, 3-8
Accuracy, 3-4, 3-9 large, 3-8
Ada application developers, 1-8 machine, 3-6
Ada compiler, A-5 mantissa, 3-8
Ada language considerations, 2-3 representation, 3-12
Ada librarian, A-5 size, 3-6
Ada linker, A-5 small, 3-8
Ada program developer., 1-8
Ada source level debugger, A-5 Sugs
Ada-sw, 4-2 compiler, 4-2, A-i, A-11, A-21
Ade, A-6
Aim, A-1 Cais

elements of the, A-3 bypassing the, 5-2 to 5-3
Ajpo, A-2 conformance, 5-1
Allocator, 3-5 definition, 5-1
Alternatives, 3-11 issues, 5-1
Apse, 1-1 transition to, 5-3

conventional, 1-5 use conventions, 5-1
Apse considerations, 4-6 Check, 3-6
Apse dependencies Colon, 3-4

minimizing, 5-3 Communication
-se interactive monitor, A-i inter-process, 5-9
.chival systems, 1-6 inter-tool, 5-2
Arpanet, 4-2 Compilation order, 4-5
Assumptions Compiler

accuracy, 3-9 ada, A-5
conditions under which non-ansi, 4-3

exceptions are raised, 3-11 Compiler bugs, 4-2
during exception processing, Compiler/linker/debugger, 1-6

3-10 Complexity, 1-5
low-level modelss, A-21 Component, 1-5
low-level os models, A-l, A-13 Components, 4-2
number of priority leve.s, 3-5 designing, 4-4
order of activation of task for purchase, 4-2

objects, 3-10 importing, 4-2
order of e aluation in slices, in software repositories, 4-4

3-9 risks associated with, 4-2
order of evaluation of bounds untested and unfamiliar, 4-3

in a range constraint, 3-7 Computer languae, 1-5
order of evaluation of each Configuration management tools,

range of an index 1-6, A-6
constraint, 3-8 Constrained type, 3-5

order of processing of callr in Constraint
a queue, 3-10 discriminant, 3-8

priority pragma, 3-5 floating point, 3-8
safe numbers, 3-7 index, 3-8
task aborting, 3-11 range, 3-43ynchronous Constraint error, 3-11, 4-5
ipc files, A-l Control character, 3-7

Asynchronous data, A-4 Conventional apse, 1-5l
3-523

--OW .m m m l n l l l

Page index-3

what it promotes, 4-1 record components, 3-2
statements, 3-2

Kit/kitia, 1-2, A-2 statements in
sequence-of-statements, 3-2

Last, 3-4 type declarations, 3-2
Length of variant parts, 3-2

attributes, 3-2 Number sign, 3-4
expanded names, 3-2 Numeric error, 3-4, 3-11
identifiers, 3-2
labels, 3-2 Onion skin model of
qualified identifiers, 3-2 transportability, 1-5
strings, 3-2 Operating system, 5-1, A-6

Librarian Operating system dependencies,
ada, A-5 A-7

Linker Operating system facilities, 4-3
ada, A-5 Operating system functions, A-I

Long float, 3-8 Operating system interfaces, A-2
Lonj_integer, 3-7 Operating system services, A-i

Machine attributes, 3-6 Pad, A-2
Machine code insertion, 3-6 Parameter, 3-10 to 3-11
Machine dependent, 4-1 Pdl, 4-5
Machine-dependent, 3-5, 3-12 Performance analysis tools, 1-6
Main program, 3-11 Physical rehost, A-6
Memory size, 3-12 Positive, 3-7
Milnet, 4-2 Pragma
Model numbers, 3-5, 3-9 implementation defined, 3-7

Itiple body implementations, interface, 3-6
4-5 priority, 3-5

shared, 3-5
Natural, 3-7 suppress, 3-11
New-line, 3-12 Pragmatic language
New page, 3-12 recommendations, 3-2
Non-graphic characters, 3-7 Priorities, 3-11
Number of Priority, 3-5

attributes, 3-2 Process
case alternatives, 3-2 cais, 5-9, 5-11
compilation units, 3-2 communication protocols, 5-9
declarations, 3-2 host operating system, 5-1
declarations on a block, 3-2 Program design, 3-1.2
elements in an array, 3-2 Program structure, 3-12
elsif alternatives, 3-2 Program error, 3-6, 3-11
enumeration values, 3-2 Project-management tools, 1-6,
explicit exceptions, 3-2 A-5
functions, 3-2 Project performance, 1-4
identifiers. 3-2 Project proposals, 1-4
library units, 3-2 Protocol
literals, 3-2 configuration management, 5-4
objects, 3-2 process communication, 5-9
operators, 3-2 tool, 5-1
package names in a use clase,

3-2 Rehost procedures, A-6
package names in a with clause, Renaming, 3-5

3-2 Repository, 4-2, 4-4
priorities, 3-2 Representation attributes, 3-12

3-524

I
Page Index-5

techniques, A-I Uses of the guide, 1-7

hings that can hinder, 1-3
tool, 5-1 Vertical bar, 3-4
tools, A-2 Viewport, A-2
tools that enhance, A-6 Vms, A-6
who can benefit from, 1-8 Window, A-2

Unchecked-conversion, 3-12 Work-arounds, 4-5

3
I
I
I
,I
I
I
I
I
I
I
I
!

3-525

